freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

中考數(shù)學專題復習平行四邊形的綜合題附詳細答案-wenkub.com

2025-03-31 07:20 本頁面
   

【正文】 BE=2AH,∴EC2=EB2+BC2=4AH2+BC2.∵K為BE的中點,BE=2AH,∴BK=AH.∵BK∥AH,∴四邊形AKBH為平行四邊形.又∵∠EBC=90176。.在RT△EBC中,EC=6,BC=4,∴EB===2∴AB=BE=2.②若改變α,β的大小,但α+β=90176。故答案為120176。PA=PC,∴∠AFP=∠BPA,∴AF=AP=PC,∴四邊形PAFC是菱形.考點:四邊形綜合題.15.已知,以為邊在外作等腰,其中.(1)如圖①,若,求的度數(shù).(2)如圖②,.①若,的長為______.②若改變的大小,但,的面積是否變化?若不變,求出其值;若變化,說明變化的規(guī)律.【答案】(1)120176。)=176。.在△PBC中,∠BPC=(180176?!?.(3)∵AE∥PC,∴∠CPE=∠PEA=45176?!唷螾AB+∠PEB=180176。從而得出∠PCE,再求出∠BPC即可得出∠BPC=∠PCE,從而證出BP=BC=1,x=﹣1,再根據(jù)AE∥PC,得出∠AFP=∠BPC=176。∠PEC+∠PEB=180176?!唷鰽HE≌△BEF.同理可證△MFG≌△BEF.∴GM=BF=AE=2.∴FC=BC-BF=10.∴.(2)過點G作GM⊥BC交BC的延長線于M,連接HF.∵AD∥BC,∴∠AHF=∠MFH.∵EH∥FG,∴∠EHF=∠GFH.∴∠AHE=∠MFG.又∵∠A=∠GMF=90176。EC∴AE=CE∵AE=CE,EF⊥AC∴EF垂直平分AC,∠AEF=∠CEF∴AF=CF∵CD∥AB∴∠CEF=∠EFA且∠AEF=∠CEF∴∠AEF=∠EFA∴AF=AE∴AF=AE=CE=CF∴四邊形AECF是菱形【點睛】本題考查了折疊問題,全等三角形的判定和性質(zhì),平行四邊形的性質(zhì),菱形的判定,熟練掌握這些性質(zhì)和判定是解決問題的關鍵.13.已知:在矩形ABCD中,AB=10,BC=12,四邊形EFGH的三個頂點E、F、H分別在矩形ABCD邊AB、BC、DA上,AE=2.(1)如圖①,當四邊形EFGH為正方形時,求△GFC的面積;(2)如圖②,當四邊形EFGH為菱形,且BF=a時,求△GFC的面積(用a表示);(3)在(2)的條件下,△GFC的面積能否等于2?請說明理由.【答案】(1)10;(2)12-a;(3)不能【解析】解:(1)過點G作GM⊥BC于M.在正方形EFGH中,∠HEF=90176。AD=B39。且∠AED=∠CEB39?!郆M=AB=2=BC,即C和M重合,∴∠ACB=90176?!唷螮QC=90176?!咚倪呅蜛BCD是菱形,∴AB=BC=CD=AD,∴△ABC、△ACD為等邊三角形∴∠4=60176。AC=AB進而求證△ABE≌△ACF,即可求得BE=CF;(2)根據(jù)△ABE≌△ACF可得S△ABE=S△ACF,故根據(jù)S四邊形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解題;(3)當正三角形AEF的邊AE與BC垂直時,邊AE最短.△AEF的面積會隨著AE的變化而變化,且當AE最短時,正三角形AEF的面積會最小,又根據(jù)S△CEF=S四邊形AECFS△AEF,則△CEF的面積就會最大.試題解析:(1)證明:連接AC,∵∠1+∠2=60176。∴∠FEC+∠FEM=90176。.在Rt△FCD中,∵G為DF的中點,∴CG=FD,同理.在Rt△DEF中,EG=FD,∴CG=EG.(2)(1)中結論仍然成立,即EG=CG.證法一:連接AG,過G點作MN⊥AD于M,與EF的延長線交于N點.在△DAG與△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;在△DMG與△FNG中,∵∠DGM=∠FGN,F(xiàn)G=DG,∠MDG=∠NFG,∴△DMG≌△FNG(ASA),∴MG=NG.∵∠EAM=∠AEN=∠AMN=90176。得到△AGH,連結HM,HE.由(1)知△AEH≌△AEF,則由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考點:四邊形綜合題7.如圖,△ABC中,AD是邊BC上的中線,過點A作AE∥BC,過點D作DE∥AB,DE與AC、AE分別交于點O、點E,連接EC.(1)求證:AD=EC;(2)當∠BAC=Rt∠時,求證:四邊形ADCE是菱形.【答案】(1)見解析;(2)見解析.【解析】【分析】(1)先證四邊形ABDE是平行四邊形,再證四邊形ADCE是平行四邊形即可;(2)由∠BAC=90176?!唷螱ME=45176?!唷螱AE=45176。MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代換即可證明EF2=ME2+NF2;(3)將△ADF繞著點A順時針旋轉(zhuǎn)90176。.(1)將△ADF繞著點A順時針旋轉(zhuǎn)90176。C=.【點睛】本題考查四邊形綜合題、正方形的性質(zhì)、等腰直角三角形的判定和性質(zhì)、全等三角形的判定和性質(zhì)等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題.4.已知:在菱形ABCD中,E,F(xiàn)是BD上的兩點,且AE∥CF.求證:四邊形AECF是菱形.【答案】見解析【解析】【分析】由菱形的性質(zhì)可得AB∥CD,AB=CD,∠ADF=∠CDF,由“SAS”可證△ADF≌△CDF,可得AF=CF,由△ABE≌△CDF,可得AE=CF,由平行四邊形的判定和菱形的判定可得四邊形AECF是菱形.【詳解】證明:∵四邊形ABCD是菱形∴AB∥CD,AB=CD,∠ADF=∠CDF,∵AB=CD,∠ADF=∠CDF,DF=DF∴△ADF≌△CDF(SAS)∴AF=CF,∵AB∥CD,AE∥CF∴∠ABE=∠CDF,∠AEF=∠CFE∴∠AEB=∠CFD,∠ABE=∠CDF,AB=CD∴△ABE≌△CDF(AAS)∴AE=CF,且AE∥CF∴四邊形AECF是平行四邊形又∵AF=CF,∴四邊形AECF是菱形【點睛】本題主要考查菱形的判定定理,首先要判定其為平行四邊形,這是菱形判定的基本判定.5.已知:如圖,在平行四邊形ABCD中,O為對角線BD的中點,過點O的直線EF分別交AD,BC于E,F(xiàn)兩點,連結BE,DF.(1)求證:△DOE≌△BOF.(2)當∠DOE等于多少度時,四邊形BFDE為菱形?請說明理由.【答案】(1)證明見解析;(2)當∠DOE=90176。在BD上時,C39。C=AC?C39?!郉P+BP=PP39。
點擊復制文檔內(nèi)容
法律信息相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1