freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

20xx-20xx中考數學備考之平行四邊形壓軸突破訓練∶培優(yōu)-易錯-難題篇及答案解析(1)-wenkub.com

2025-03-30 22:21 本頁面
   

【正文】 AB=CD,AD∥BC.∵四邊形AECF是矩形,∴AE∥CF.∴四邊形AMCN是平行四邊形.∴AM=CN.在Rt△ABM和Rt△CDN中,AB=CD,AM=CN,∴Rt△ABM≌Rt△CDN.(2)當AB=AF時,四邊形AMCN是菱形.∵四邊形ABCD、AECF是矩形,∴∠B=∠BAD=∠EAF=∠F=90176?!唷螮CB=∠PEG,∵PE=EC,∠EGP=∠CBE=90176。.∵N是∠DCP的平分線上一點,∴∠NCP=45176。AB=BC.∴∠NMC=180176?!唷螦EM=120176。時,結論An﹣2M=MN仍然成立.(不要求證明) 【答案】【解析】分析:(1)要證明AM=MN,可證AM與MN所在的三角形全等,為此,可在AB上取一點E,使AE=CM,連接ME,利用ASA即可證明△AEM≌△MCN,然后根據全等三角形的對應邊成比例得出AM=MN.(2)同(1),要證明AM=MN,可證AM與MN所在的三角形全等,為此,可在AB上取一點E,使AE=CM,連接ME,利用ASA即可證明△AEM≌△MCN,然后根據全等三角形的對應邊成比例得出AM=MN.詳(1)證明:在邊AB上截取AE=MC,連接ME.在正△ABC中,∠B=∠BCA=60176。=.考點:正方形的性質,矩形的判定和性質,勾股定理,直角三角形30度的性質12.如圖,拋物線y=mx2+2mx+n經過A(﹣3,0),C(0,﹣)兩點,與x軸交于另一點B.(1)求經過A,B,C三點的拋物線的解析式;(2)過點C作CE∥x軸交拋物線于點E,寫出點E的坐標,并求AC、BE的交點F的坐標(3)若拋物線的頂點為D,連結DC、DE,四邊形CDEF是否為菱形?若是,請證明;若不是,請說明理由.【答案】(1)y=x2+x﹣;(2)F點坐標為(﹣1,﹣1);(3)四邊形CDEF是菱形.證明見解析【解析】【分析】將A、C點的坐標代入拋物線的解析式中,通過聯立方程組求得該拋物線的解析式;根據(1)題所得的拋物線的解析式,可確定拋物線的對稱軸方程以及B、C點的坐標,由CE∥x軸,可知C、E關于對稱軸對稱?!螦BM=∠MAB=15176?!嗨倪呅蜤GFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.(2)作BN⊥AG于N,在BN上截取一點M,使得AM=BM.設AN=x.∵∠AGF=105176。時,猜想此時線段CF,AE,OE之間有怎樣的數量關系,直接寫出結論不必證明.【答案】(1)OE=OF.理由見解析;(2)補全圖形如圖所示見解析,OE=OF仍然成立;(3)CF=OE+AE或CF=OE﹣AE.【解析】【分析】(1)根據矩形的性質以及垂線,即可判定,得出OE=OF;(2)先延長EO交CF于點G,通過判定,得出OG=OE,再根據中,即可得到OE=OF;(3)根據點P在射線OA上運動,需要分兩種情況進行討論:當點P在線段OA上時,當點P在線段OA延長線上時,分別根據全等三角形的性質以及線段的和差關系進行推導計算即可.【詳解】(1)OE=OF.理由如下:如圖1.∵四邊形ABCD是矩形,∴ OA=OC.∵,∴.∵在和中,∴,∴ OE=OF;(2)補全圖形如圖2,OE=OF仍然成立.證明如下:延長EO交CF于點G.∵,∴ AE//CF,∴.又∵點O為AC的中點,∴ AO=CO.在和中,∴,∴ OG=OE,∴中,∴ OE=OF;(3)CF=OE+AE或CF=OEAE.證明如下:①如圖2,當點P在線段OA上時.∵,∴,由(2)可得:OF=OG,∴是等邊三角形,∴ FG=OF=OE,由(2)可得:,∴ CG=AE.又∵ CF=GF+CG,∴ CF=OE+AE;②如圖3,當點P在線段OA延長線上時.∵,∴,同理可得:是等邊三角形,∴ FG=OF=OE,同理可得:,∴ CG=AE.又∵ CF=GFCG,∴ CF=OEAE.【點睛】本題屬于四邊形綜合題,主要考查了矩形的性質、全等三角形的性質和判定以及等邊三角形的性質和判定,解決問題的關鍵是構建全等三角形和證明三角形全等,利用矩形的對角線互相平分得全等的邊相等的條件,根據線段的和差關系使問題得以解決.11.如圖,在正方形ABCD中,點G在對角線BD上(不與點B,D重合),GE⊥DC于點E,GF⊥BC于點F,連結AG.(1)寫出線段AG,GE,GF長度之間的數量關系,并說明理由;(2)若正方形ABCD的邊長為1,∠AGF=105176?!唷螧B39。即∠AEF=90176。即可得到AE⊥EF;(2)連接BB′,通過折疊,可知∠EBB′=∠EB′B,由E是BC的中點,可得EB′=EC,∠ECB′=∠EB′C,從而可證△BB′C為直角三角形,在Rt△AOB和Rt△BOE中,可將OB,BB′的長求出,在Rt△BB′C中,根據勾股定理可將B′C的值求出.【詳解】(1)由折線法及點E是BC的中點,∴EB=EB′=EC,∠AEB=∠AEB′,∴△B39?!唷鰽DF≌△ACE(SAS),∴DF=CE,∴CE+CF=CF+DF=CD=AC,∴CA=CE+CF.(2)結論:CFCE=AC.理由:如圖②中,如圖作OG∥AD交CF于G,則△OGC是等邊三角形.∵∠GOC=∠FOE=60176。得到射線ON,射線ON與直線CD相交于點F.(1)如圖①,點O與點A重合時,點E,F分別在線段BC,CD上,請直接寫出CE,CF,CA三條段段之間的數量關系;(2)如圖②,點O在CA的延長線上,且OA=AC,E,F分別在線段BC的延長線和線段CD的延長線上,請寫出CE,CF,CA三條線段之間的數量關系,并說明理由;(3)點O在線段AC上,若AB=6,BO=2,當CF=1時,請直接寫出BE的長.【答案】(1)CA=CE+CF.(2)CFCE=AC.(3)BE的值為3或5或1.【解析】【分析】(1)如圖①中,結論:CA=CE+CF.只要證明△ADF≌△ACE(SAS)即可解決問題;(2)結論:CFCE=AC.如圖②中,如圖作OG∥AD交CF于G,則△OGC是等邊三角形.只要證明△FOG≌△EOC(ASA)即可解決問題;(3)分四種情形畫出圖形分別求解即可解決問題.【詳解】(1)如圖①中,結論:CA=CE+CF.理由:∵四邊形ABCD是菱形,∠BAD=120176。;若AD=AC,如圖 2,則AB=AC=BC,△ABC是等邊三角形,∠ABC=60176?;?0176?!唷螦BC=∠ADC=60176?!鰽EF為正三角形,E、F在菱形的邊BC,CD上.(1)證明:BE=CF.(2)當點E,F分別在邊BC,CD上移動時(△AEF保持為正三角形),請?zhí)骄克倪呅蜛ECF的面積是否發(fā)生變化?若不變,求出這個定值;如果變化,求出其最大值.(3)
點擊復制文檔內容
黨政相關相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1