freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

刷題狗共5篇-資料下載頁

2025-10-04 12:27本頁面
  

【正文】 數(shù),知識(shí)功底雄厚的物理學(xué)的大學(xué)生面前,卻不知道如何利用現(xiàn)有的永久磁鐵和線圈制作一個(gè)發(fā)電機(jī)模型。在實(shí)際生活中所遇到的問題大都是沒有經(jīng)歷過的,是嶄新的,是我們利用固有的經(jīng)驗(yàn)沒法解決的。所以培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和知識(shí)遷移能力至關(guān)重要,而題海戰(zhàn)術(shù)最大的缺陷就是不能培養(yǎng)學(xué)生的創(chuàng)新意識(shí)。,學(xué)習(xí)的最終目的就是解決生活實(shí)際中的問題,但生活實(shí)際中的問題并不是以文字的形式呈現(xiàn)的,它需要我們生活實(shí)際中存在的一些現(xiàn)象提煉,抽象,總結(jié)成文字符號,然后將文字形式的問題進(jìn)行簡化分析,然后解決問題,最終將解決問題的方法或結(jié)果還原到實(shí)際生活中去。生活中遇到所有的問題都是嶄新的,更多的問題時(shí)我們用原有的經(jīng)驗(yàn)是沒法解決 的。而題海戰(zhàn)術(shù)主要是進(jìn)行大量的習(xí)題訓(xùn)練,注重的是問題的結(jié)果,缺乏對問題的深度思考總結(jié)和反思,也忽視了對實(shí)際問題本質(zhì)的探索、分析、總結(jié)和思考,使學(xué)生過分依賴于原有的經(jīng)驗(yàn)和固有的思維模式。長期接受題海戰(zhàn)術(shù)訓(xùn)練的學(xué)生面對生活中存在的新問題便會(huì)束手無策。即所謂的“高分低能”“高學(xué)歷,低水平”,不利于學(xué)生成績的提高,短期的習(xí)題強(qiáng)化訓(xùn)練可以讓學(xué)生更好地鞏固知識(shí),考試時(shí)很快地進(jìn)入習(xí)題所創(chuàng)設(shè)的情景,提高學(xué)生做題的準(zhǔn)確度,會(huì)使學(xué)生的成績?nèi)〉幂^大的突破。但是長期的習(xí)題訓(xùn)練會(huì)使學(xué)生思維固化,對問題的理解停留答案對否的在淺層次上也會(huì)喪失對生知識(shí)系統(tǒng)性和整體性的把握。容易使學(xué)生偏離學(xué)科的教學(xué)主線,使學(xué)生學(xué)越迷糊。海量的習(xí)題訓(xùn)練不僅占有學(xué)生大量的時(shí)間;海量的習(xí)題中很多都是同一類型的,毫無目的的習(xí)題訓(xùn)練只是在浪費(fèi)學(xué)生的時(shí)間,不利于學(xué)生對課外知識(shí)的獲取和學(xué)習(xí)。所以說長期的題海戰(zhàn)術(shù)不利于學(xué)生成績的提高。,容易降低課堂的教學(xué)效果。學(xué)生海量的習(xí)題訓(xùn)練會(huì)使學(xué)生的思維固化,缺乏發(fā)散思維。于是課堂的氣氛往往會(huì)變得很沉悶,容易形成老師灌輸?shù)默F(xiàn)象。同時(shí),筆者也認(rèn)為適量的習(xí)題訓(xùn)練是非常必要的,它可以幫助學(xué)生查漏補(bǔ)缺,幫助學(xué)生更準(zhǔn)確地理解和把握知識(shí)??偠灾谶M(jìn)行習(xí)題訓(xùn)練的時(shí)候,要把握 好一個(gè)“度”。作為老師,要對學(xué)生的習(xí)題訓(xùn)練和考試作科學(xué)的引導(dǎo),在提高學(xué)生成績的同時(shí)也要對學(xué)生其他方面素質(zhì)的培養(yǎng),學(xué)習(xí)是一個(gè)潛移默化的過程,切忌急功近利而導(dǎo)致事倍功半。題海戰(zhàn)術(shù)的弊端題海戰(zhàn)術(shù)是應(yīng)試教育的主要表現(xiàn)形式,是目前我國中小學(xué),特別是一些名牌學(xué)校(包括一些大學(xué))的主要教育方式。題海戰(zhàn)術(shù)是指教學(xué)活動(dòng)圍繞習(xí)題運(yùn)轉(zhuǎn),教師講題、學(xué)生作題的時(shí)間幾乎占據(jù)了整個(gè)校內(nèi)和校外學(xué)習(xí)時(shí)間的80%~90%?,F(xiàn)在任何一個(gè)人,即使你不到學(xué)校課堂,只要看看我們家里初中、高中孩子們的寫字臺(tái)、書架甚至床上堆放著的一摞又一摞小山似的課堂練習(xí)題、課后作業(yè)題、考試題、模擬題以及各種版本的習(xí)題集和參考書,你就會(huì)對題海戰(zhàn)術(shù)有一個(gè)切身的感受。各個(gè)學(xué)校普遍采用這種教學(xué)方式的理由是一方面它能鞏固和熟悉所學(xué)知識(shí)。另一方面它能提高學(xué)生在各種重要考試中的分?jǐn)?shù)。所以,無論是學(xué)校、教師還是學(xué)生家長都認(rèn)為題海戰(zhàn)術(shù)是一種一舉多得、行之有效的教學(xué)方式,并產(chǎn)生一種認(rèn)識(shí)上的誤區(qū):多做題、做難題只有好處,沒有害處。學(xué)習(xí)一門知識(shí),做適量的習(xí)題是完全必要的,它能幫助學(xué)生理解和鞏固所學(xué)知識(shí),發(fā)現(xiàn)學(xué)習(xí)中的問題。但是,任何事情都有“度”。這猶如維生素是人體健康所必需的,如果你過量攝入,不但不會(huì)促進(jìn)健康,反而會(huì)中毒。題海戰(zhàn)術(shù)的特點(diǎn)是:通過大量重復(fù)性地做一些偏題、難題,去熟悉考試題型,提高解題速度。適度地做一些難題,可以培養(yǎng)刻苦鉆研精神,但是過量地、重復(fù)性地做偏題、難題,其實(shí)對大多數(shù)學(xué)生來說是不必要,甚至是有害的。任何一門知識(shí)、課程都是分層次的,是從低層到高層次相互銜接而構(gòu)成。高層次的知識(shí)比低層次的知識(shí)更全面、更深刻,因而解答問題的途徑和方法也越多、越簡捷。作為一名普通學(xué)生,當(dāng)他只局限于所學(xué)過的知識(shí)范圍內(nèi),對于高層次知識(shí)一點(diǎn)兒不了解的情況下去解答難題時(shí),答題的途徑和方法就會(huì)受到限制,容易鉆牛角尖,把簡單的事情復(fù)雜化,事倍功半。例如小學(xué)算術(shù)課里有用加減乘除四則運(yùn)算解應(yīng)用題的內(nèi)容,其中有些難題用算術(shù)方法解,就連一些大學(xué)生也解不出來,可是若用代數(shù)列方程的方法去解,則輕而易舉。再如中學(xué)數(shù)學(xué)課有求函數(shù)極值的問題,用初等數(shù)學(xué)方法解很繁瑣,但是若用高等數(shù)學(xué)中求導(dǎo)數(shù)的方法則可一步求解。學(xué)生做習(xí)題,實(shí)際上是一個(gè)三段論演繹思維過程,是從一般至個(gè)別的思維過程。即從學(xué)過的定理、公式(大前提)出發(fā),再根據(jù)已知條件(小前提),推出結(jié)論。演繹思維的特點(diǎn)是其前提與結(jié)論之間有必然的聯(lián)系,結(jié)論的知識(shí)包含在前提的知識(shí)之中,絕不能超出大前提所斷定的范圍,因而做習(xí)題得出的結(jié)果,也絕不能超出所學(xué)過的知識(shí)范圍。學(xué)過邏輯學(xué)的人都知道人類的思維模式是豐富多彩的,即有演繹思維又有歸納思維,既有唯一性思維又有發(fā)散思維,既有正向思維又有逆向思維??。當(dāng)一個(gè)人長久過度地陷入一種演繹思維模式的訓(xùn)練中,就會(huì)使其思維形式變得單一和僵化,使人的思維永遠(yuǎn)不能超出大前提,永遠(yuǎn)不能超出所學(xué)過的知識(shí)。數(shù)學(xué)史上非歐幾何的發(fā)現(xiàn)過程就很富有啟發(fā)意義。在歐幾里得幾何學(xué)中有一個(gè)著名的平行公理(第五公設(shè)): 過直線外一點(diǎn)能且只能引一條直線和該直線平行。19世紀(jì)的匈牙利數(shù)學(xué)家法卡什耗費(fèi)大半生時(shí)間從事這一公理的證明,但最終也沒有證明出來。當(dāng)他得知自己的兒子——波耶,也在攻克這一難題時(shí),他在給兒子的信中寫道:“你不能再去論證平行公理,我深知這條路會(huì)帶來什么結(jié)果。我曾力圖穿越這無盡的黑夜,并因此葬送了我生活的全部光明與快樂??我懇求你,不要再去管平行公理。”但是,年輕的波耶并未理會(huì)父親的忠告,繼續(xù)研究平行公理,最后,他突破了二千年來歐氏幾何思想的束縛,否定了歐氏幾何的平行公理并提出了新的公理: 過直線外一點(diǎn),可以引無數(shù)條直線和該直線平行。我們可以想像在一條已知直線L無限遠(yuǎn)處有一點(diǎn)A,顯然,過點(diǎn)A可以有無數(shù)條直線與直線L不相交(即平行)。為什么?因?yàn)榧热贿@個(gè)點(diǎn)與已知直線的距離K是無限大,即K要多大有多大,那么從感性上說,過該點(diǎn)的無數(shù)條的直線與已知直線的距離也是無限大的,因而也不可能與該線有交點(diǎn),見圖1。但是,當(dāng)這個(gè)點(diǎn)與已知直線逐漸靠近,即距離K逐漸減小時(shí),那么過這個(gè)點(diǎn)的直線與已知直線相交的可能性就會(huì)越來越大,不相交的可能性就會(huì)越來越小,當(dāng)K趨近于零時(shí),就可以認(rèn)為只有一條過該點(diǎn)的直線與已知直線不相交(即平行),見圖2。所以說歐氏幾何中的平行公理,僅是新公理中當(dāng)直線外一點(diǎn)與已知直線的距離趨于零時(shí)的特例。思維一旦突破了歐氏幾何的束縛,得出新的公理,那么就可以由此出發(fā),運(yùn)用演繹推理得出“三角形三個(gè)內(nèi)角和小于180176?!钡纫幌盗行碌亩ɡ?、公式,從而建立起非歐幾何體系。非歐幾何是人類空間認(rèn)識(shí)史上的一次質(zhì)的飛躍,它后來在相對論中得到了論證,并在天體物理學(xué)和原子物理學(xué)中得到了應(yīng)用。從以上事例可以看出歐氏幾何與非歐幾何、舊公理與新公理之間,僅僅隔著一層窗戶紙,一捅就破。一旦捅破,即使沒學(xué)過幾何的人也可以從直觀上理解。但是為什么終生從事歐氏幾何研究的老法卡什卻沒有發(fā)現(xiàn)這么一個(gè)簡單而直觀的真理呢?這是由于他長久地陷在歐氏幾何領(lǐng)域,形成了單一的演繹思維模式,因而不能突破原有歐氏幾何的框框,始終堅(jiān)信歐氏幾何是絕對正確的,平行公理是可以證明的。相反,他的兒子波耶較少地受到單一思維模式的訓(xùn)練和束縛,因而思維更為開放。他更注重于現(xiàn)實(shí)、直觀和想像力,并運(yùn)用另一種思維方式——?dú)w納推理,得出新的結(jié)論、新的公里。科學(xué)史上有一個(gè)著名的李約瑟難題:從公元前一世紀(jì)到公元15世紀(jì)的漫長歲月中,中國人在應(yīng)用自然知識(shí)于滿足人的需要方面,曾經(jīng)勝過歐洲人。那么,為什么近代(15世紀(jì)后)科學(xué)革命沒有在中國發(fā)生呢? 這個(gè)難題是英國著名學(xué)者李約瑟博士提出來的。其實(shí)這個(gè)問題也與當(dāng)時(shí)中國的教育制度——科舉制度密切相關(guān)??婆e制是中國封建社會(huì)一種通過考試選拔官員的制度。在15世紀(jì)前,科舉制尚未出現(xiàn)和雛形階段,時(shí)間越往前推移,中國的發(fā)明、創(chuàng)造越多、越領(lǐng)先于世界。反現(xiàn)代(15世紀(jì)后)在科舉制度逐步完善和強(qiáng)化階強(qiáng)化階段,中國具有領(lǐng)先地位的科技成果遠(yuǎn)遠(yuǎn)少于歐洲,具有世界意義的首創(chuàng)性發(fā)明近乎絕跡。為什么會(huì)出現(xiàn)這種明顯的反差呢?唐代以后,科舉制度逐步向標(biāo)準(zhǔn)化方向發(fā)展。到了明、清兩代,考試所用文體規(guī)定一律要用“八股”,必須以《四書》、《五經(jīng)》中的文句為題,內(nèi)容只能依據(jù)牛熹《四書集注》代圣人言,不能絲毫闡發(fā)已意??婆e考什么,學(xué)校教育也跟著注重什么,學(xué)校教育完全屈從于科舉的要求,使當(dāng)時(shí)的學(xué)校成為科舉的預(yù)備機(jī)關(guān)。在科舉制度下教育出來的學(xué)生思維具有演繹思維的特點(diǎn):學(xué)生思想被限制在《四書》、《五經(jīng)》之內(nèi),并用刻板的八股標(biāo)準(zhǔn)決定考生的取舍。誘導(dǎo)學(xué)生鉆故紙堆積,死記硬背,搞題海戰(zhàn)術(shù),天長日久形成了一種惟書、惟上不敢越雷池一步的思維模式。思維的封閉性導(dǎo)致唐代以后中國政治、經(jīng)濟(jì)的封閉和民族創(chuàng)新精神淪落、科學(xué)技術(shù)的停滯不前。及至19世紀(jì)末,中國已成任人宰割的對象,瀕臨亡國滅種。15世紀(jì)后,500年過去了,世界已進(jìn)入21世紀(jì)。目前一個(gè)不容樂觀的事實(shí)是:我國的科技實(shí)力仍然落后于西方發(fā)達(dá)國家。當(dāng)今中國中學(xué)生在國際數(shù)學(xué)、特理、化學(xué)奧林匹克競賽中,幾乎年年能擊敗眾多對手,獲得各種個(gè)人獎(jiǎng)和集體獎(jiǎng)。但是中國的高校卻從來沒有培養(yǎng)出獲得諾貝爾獎(jiǎng)的人才,這是為什么呢?這是由于數(shù)理化競賽是在已知的學(xué)科知識(shí)范圍內(nèi)求出結(jié)果,是一個(gè)演繹推理的過程,而中國中學(xué)生的思維模式恰是演繹型為主,再加之勤奮和刻苦,賽前多做題,做難題,反復(fù)訓(xùn)練,因而能取得好成績。反之要想獲得諾貝爾獎(jiǎng),必須突破已知的知識(shí)范圍,有新的發(fā)現(xiàn)、發(fā)明,這就更需要?dú)w納思維、創(chuàng)新思維,更需要不局限于一個(gè)學(xué)科的廣博知識(shí),更需要想像力,而這點(diǎn)正是中國學(xué)者的弱項(xiàng)。還有一個(gè)相關(guān)問題也長期困擾著人們,在中、美兩國的基礎(chǔ)教育中,一些自然科學(xué)課程如數(shù)學(xué)、物理、化學(xué)等課內(nèi)容基本相同,而且中國學(xué)生在學(xué)習(xí)這些課程時(shí)所花的時(shí)間,下的功夫要遠(yuǎn)遠(yuǎn)超過美國的同齡人,那么為什么恰恰是美國人,在這些領(lǐng)域獲得的諾貝爾獎(jiǎng)卻是世界上最多的呢?如果我們深入考察中美兩國教育的各個(gè)環(huán)節(jié),就可以發(fā)現(xiàn),即使兩國的教材內(nèi)容基本相同,但是在怎樣教、怎樣學(xué)、考什么、怎樣考等方面卻大相徑庭,進(jìn)而導(dǎo)致了兩中不同的教學(xué)效果,形成了兩種不同的思維模式。題海戰(zhàn)術(shù)的另一個(gè)副作用是:大題量、高難度的做題訓(xùn)練加重了學(xué)生負(fù)擔(dān),使大多數(shù)學(xué)生在身心上難以承受,難以完成,從而對學(xué)習(xí)產(chǎn)生厭倦心理,對自己失去自信心。一個(gè)大多數(shù)人失去自信并對科學(xué)不感興趣的民族,是不可能走在世界前列的。一部世界史表明,教育是一個(gè)民族興衰榮辱的最持久、最隱蔽的決定性影響因素。切莫忽視教育,切莫小看那些司空見慣的上課、練習(xí)、教試、作業(yè)??,它使成千上萬的學(xué)生在日復(fù)一日、年復(fù)一年、一代又一代的訓(xùn)練中形成了民族固定的思維模式和精神狀態(tài),從而也決定了一個(gè)民族的命運(yùn)和未來。我們批判題海戰(zhàn)術(shù),批判應(yīng)試教育,并不是取消做習(xí)題,取消考試;指出演繹思維的局限性,并不是否定演繹思維。教學(xué)方式是豐富多彩的,思維形式也是多種多樣的。我們反對的只是單一模式的教學(xué)方式和單一模式的思維訓(xùn)練。我們迫切需要和呼喚的是各種各樣教育方式和思維模式的均衡與協(xié)調(diào),因?yàn)橹挥羞@樣才能培養(yǎng)出具有創(chuàng)新精神的高素質(zhì)人才。練的誤區(qū)在數(shù)學(xué)教學(xué)中我國有一種被作為經(jīng)驗(yàn)來介紹的說法是“熟能生巧”,我們知道熟能生巧是針對技藝型的東西提的,而數(shù)學(xué)是屬于思考型的。因此,應(yīng)該怎樣理解數(shù)學(xué)教學(xué)中的“熟能生巧”?是不是題目做得越多越巧?做多了自然會(huì)生巧?大量的停留在外部操作上的解題訓(xùn)練,也能產(chǎn)生思考上的巧嗎? 也正因?yàn)閷Α扒谀苎a(bǔ)拙”“熟能生巧”理論理解得不透,數(shù)學(xué)教學(xué)實(shí)踐中常常過分強(qiáng)調(diào)練習(xí),產(chǎn)生了一些認(rèn)識(shí)上的誤區(qū),在這些認(rèn)識(shí)下的實(shí)踐是難以實(shí)現(xiàn)素質(zhì)教育的目的的,有必要正本清源。誤區(qū)之一:課堂上,練習(xí)越多越好。誤區(qū)之二:課堂上,練習(xí)做得越快越好。誤區(qū)之三:作業(yè)越多越好,參考資料越多越好。三個(gè)誤區(qū)的核心實(shí)質(zhì)就是練習(xí)越多越好。那么,練習(xí)真的越多越好嗎?數(shù)學(xué)教學(xué)的核心是培養(yǎng)學(xué)生分析和解決問題的能力。誠然,適量的練習(xí)有利于技巧和技能的形成,是必要的,但運(yùn)算操作只為學(xué)生的理解領(lǐng)會(huì)提供必要條件;大量的反復(fù)練習(xí)只有利于“解題術(shù)”水平的提高,決不是解決問題能力的提高。大量的反復(fù)操作不僅加重了學(xué)生的負(fù)擔(dān),更可怕的是它是一種“窒息思想”的機(jī)械動(dòng)作,長期的套用公式、步驟、題型,結(jié)果是學(xué)生的“想法”越來越少,更不用說富于創(chuàng)造性的思維了,又何來能力?大量的反復(fù)操練,密集的運(yùn)動(dòng)式檢測,或許考試中碰巧遇到做過或似曾相識(shí)的題目,學(xué)生能考出好一點(diǎn)的成績,但真正的能力考查,如高考中的應(yīng)用題、解答題也是老師能預(yù)先讓學(xué)生“按題型操練熟”的嗎?日后學(xué)生走入社會(huì)遇到的一切問題,我們也能全部預(yù)先演習(xí)過嗎?長期以來,我們把優(yōu)秀教師定位在“辛勤的園丁”的層面上。習(xí)慣認(rèn)為,教學(xué)只要投入,就有產(chǎn)出;只要教,就會(huì)有收獲。所以,有的教師將學(xué)生盯得緊,作業(yè)布置多,考試考得勤。對學(xué)生的學(xué),習(xí)慣于用“勤能補(bǔ)拙”“熟能生巧”等古訓(xùn)來訓(xùn)導(dǎo)學(xué)生。對于學(xué)生在學(xué)習(xí)中表現(xiàn)出來的各種焦慮、退縮、自卑等消極心態(tài),簡單斥之為“學(xué)習(xí)態(tài)度不端正、學(xué)習(xí)目標(biāo)不明確”。這無意之中為自己的知識(shí)灌輸、題海戰(zhàn)術(shù)、頻繁的考試找到了理由,對學(xué)生造成的身心傷害作了開脫。從僵化的課堂教學(xué)中,從學(xué)生表現(xiàn)的逆反、厭倦的眼神里,我們可以感覺到課堂教學(xué)中缺少一種生命的活力。應(yīng)該承認(rèn),相當(dāng)多的流失生,之所以過早地離開校園,就是因?yàn)槌惺懿涣藛握{(diào)的課堂生活、沉重的學(xué)習(xí)壓力和頻繁的考試打擊,承受不了教師的埋怨和冷落,由對學(xué)習(xí)的希望逐漸變得絕望,最后不得不以失敗者的心態(tài),走向社會(huì)。從這個(gè)角度來說,相當(dāng)一些教學(xué),制造了學(xué)習(xí)的失敗者。目前社會(huì)上很多所謂的奧數(shù)班,雖然講的是奧數(shù)題,但老師在課堂上根本不會(huì)把問題延伸開講,而是把所有時(shí)間都花在讓學(xué)生反復(fù)練“基本題”上,一直練到一個(gè)解題方法在所有孩子的頭腦中定型,見到這個(gè)類型的題目就能識(shí)別出來,不要思考就能列出算式。如此“熟能生巧”,最終的結(jié)果無非就是把孩子的頭腦鍛煉成“機(jī)器”一樣,何談分析問題的能力呢?奧數(shù)本身的意義早已喪失殆盡了。何況,2年級的奧數(shù)主要是培養(yǎng)孩子對數(shù)學(xué)的興趣,這點(diǎn)很重要。當(dāng)然,并不是說不要練習(xí),在數(shù)學(xué)教學(xué)實(shí)踐中,前人總結(jié)出了一套行之有效的“練”法,如“重點(diǎn)問題反復(fù)練”、“易錯(cuò)問題經(jīng)常練”、“難點(diǎn)問題對照練”,“一題多變”、“一題多解”、“多題一解”、“題組練習(xí)”、“變式研究”、“專題探索”等,我國著名特級教師邱學(xué)華還提出了“學(xué)在教之前、練在講之前”的“嘗試教學(xué)模式”,為我們的教學(xué)和“練習(xí)改革”提供了新的視角。我們可以在教學(xué)中根據(jù)需要
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)課件相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1