【導讀】,仰角與俯角有何區(qū)別?在Rt△BPC中,∠B=34°出各段山坡的高度h1,h2,…,hn,然后我們再“積零為整”,把。交BD的延長線于點F,垂足為F,∠AFD=90°由題意圖示可知∠DAF=30°在Rt△CDE中,∠CED=90°得到數(shù)學問題的答案;
【總結(jié)】年級九年級課題解直角三角形(3)課型新授教學媒體多媒體教學目標知識技能,了解方位角的命名特點,能準確找到方位角是指哪一個角;、坡度的概念,知道坡角和坡度的關(guān)系;、坡角的實際問題.過程方法經(jīng)歷解直角三角形的實際應(yīng)用的過程,運用轉(zhuǎn)化思想,把實
2024-11-19 09:38
【總結(jié)】(第二課時)福州民族中學陳毓新在Rt△ABC中,∠C=90°,根據(jù)下列條件解直角三角形;(1)a=30,b=20;(2)∠B=72°,c=14.ABCb=20a=30c(2)兩銳角之間的關(guān)系∠A+∠B=90°(3)邊角之間的關(guān)系
2025-09-21 10:39
【總結(jié)】修路、挖河、開渠和筑壩時,設(shè)計圖紙上都要注明斜坡的傾斜程度.坡面的鉛垂高度(h)和水平長度(l)的比叫做坡面坡度(或坡比).記作i,即i=.坡度通常寫成1∶m的形式,如i=1∶水平面的夾角叫做坡角,記作a,有i==tana.顯
2024-12-01 00:43
【總結(jié)】(1)已知平頂屋面的寬度L和坡頂?shù)脑O(shè)計高度h(或設(shè)計傾角a)(如圖)。你能求出斜面鋼條的長度和傾角a(或高度h)嗎?hLa例題:如圖,一棵大樹在一次強烈的地震中于離地面10米處折斷倒下,樹頂落在離樹根24米處.大樹在折斷之前高多少?解利用勾股定理可以求出折斷倒下部分的
2024-12-08 10:11
【總結(jié)】解直角三角形的應(yīng)用(1)在直角三角形中,除直角外,由已知兩元素求其余未知元素的過程叫解直角三角形.(1)三邊之間的關(guān)系:a2+b2=c2(勾股定理);(2)兩銳角之間的關(guān)系:∠A+∠B=90o;(3)邊角之間的關(guān)系:ACBab
2024-11-27 23:29
【總結(jié)】解直角三角形(1)要想使人安全地攀上斜靠在墻面上的梯子的頂端,梯子與地面所成的角α一般要滿足50°≤α≤75°.現(xiàn)有一個長6m的梯子.問:(1)使用這個梯子最高可以安全攀上多高的平房?(精確到)這個問題歸結(jié)為:在Rt△ABC中,已知∠A=75°,斜邊AB=6,求BC的長角α
2024-12-01 00:58
【總結(jié)】新人教版九年級數(shù)學(下冊)第二十八章§解直角三角形(1)復習30°、45°、60°角的正弦值、余弦值和正切值如下表:銳角a三角函數(shù)30°45°60°sinacosatana122
2024-11-21 00:13
【總結(jié)】解直角三角形之間的關(guān)系:之間的關(guān)系:之間的關(guān)系A(chǔ)+B=900a2+b2=c2CAB的鄰邊的對邊正切函數(shù):斜邊的鄰邊余弦函數(shù):斜邊的對邊正弦函數(shù):AAAAAAA???????tancossin
2024-11-30 05:28
【總結(jié)】◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階
2025-06-18 13:06
【總結(jié)】§解直角三角形(1)復習30°、45°、60°角的正弦值、余弦值和正切值如下表:銳角a三角函數(shù)30°45°60°sinacosatana1222322212332
2024-11-21 04:44
【總結(jié)】在Rt△ABC中,∠C=90°,根據(jù)下列條件解直角三角形;(1)a=30,b=20;(2)∠B=72°,c=14.ABCb=20a=30c(2)兩銳角之間的關(guān)系∠A+∠B=90°(3)邊角之間的關(guān)系caAA???斜邊的對邊s
2024-11-21 06:18
【總結(jié)】解直角三角形(4)1、如圖,在Rt△ABC中:22復習ABC(1)∠A=30°,AB=4,解這個直角三角形;(2)tanA=,求∠A的大小。導入如圖,有三個斜坡,其坡面與水平面的夾角分別為α、β、γ,且αβγ
2024-11-22 02:59
2025-06-21 03:13
【總結(jié)】年級九年級課題解直角三角形(2)課型新授教學媒體多媒體教學目標知識技能會把實際問題轉(zhuǎn)化為解直角三角形問題,能運用解直角三角形的方法解決問題;、俯角等概念,學會綜合運用所學知識解決實際題.過程方法經(jīng)歷解直角三角形的實際應(yīng)用,運用轉(zhuǎn)化思想,學會把實
2025-06-21 00:22