【正文】
起的換熱器換熱性能的降低, 圖4能量系數(shù)隨時(shí)間的變化 The change of overall energy transfer coefficient圖6比較了3種工況下霜厚度,和密度,的變化,隨著時(shí)間的增加,逐漸增加;并且相對(duì)濕度越大,其增加越快;而且風(fēng)速越大,其.增長(zhǎng)也越快,由圖可見,結(jié)霜?jiǎng)傞_始階段,增加迅速,到2b左右增加的速率慢慢降低,相對(duì)濕度越大,密度增加得反而越慢,這說明進(jìn)入霜層的水蒸氣主要用來增加,并且從圖中可以發(fā)現(xiàn),風(fēng)速對(duì)于,變化影響不大。 圖5霜的厚度隨時(shí)間的變化 The change of frost thickness 圖6霜的密度隨時(shí)間的變化 The change of frost density4 結(jié) 論(1)將計(jì)算霜表面水蒸氣過飽和度的公式進(jìn)行推廣,使之不僅能適用于霜表面與空氣側(cè)差較大的工況,還能適用于兩者溫差較小的工況.(2)建立了翅片管換熱器結(jié)霜過飽和模型,該模型能夠計(jì)算翅片管換熱器結(jié)霜性能預(yù)測(cè)中4個(gè)隨時(shí)間變化的參數(shù),即結(jié)霜量、能量傳遞系數(shù)、霜的厚度和密度.(3)通過與實(shí)驗(yàn)數(shù)據(jù)比較,誤差在10%以內(nèi),本文所建立的結(jié)霜過飽和模型能有效地對(duì)翅片管換熱器結(jié)霜工況進(jìn)行預(yù)測(cè),參考文獻(xiàn):[1] Jones B W, Parker J formation with varying environmental parameters [J]. Journal Heat Transfer,1975,97(2): 255259.[2] ONeal D L,Tree D review of frost formation insimple geometries [J]. ASHRAE Transactions, 1987,93(2): 258274. [3] Kondepudi S N, ONeal D of finnedtube heat exchangers under frosting conditions: model [J]. International Journal of Refrige ration, 1993, 16(3): 175180. [4] Seker D,Karatas H, Egrican N. Frost formation onfinandtube heat exchangers. Part I. Modeling of frost formation on finand tube heat exchangers [J]. Inter national Journal of Refrigeration, 2004, 27(4):367 374. [5] Na B,Webb R model for frost growth rate[J]. International Journal of Heat and Mass Transfer,2004,47(5): 925936. [6] Na B,Webb R transfer on and within a frostlayer [J]. International Journal of Heat and Mass Transfer, 2004,47(5):899911. [7] Na B,Webb R L. A fundamental understanding of factors affecting frost nucleation [J]. International Journal of Heat and Mass Transfer, 2003,46(20):3797 3808.[8] Ingenieure V heat atlas[M]. GmbH,Germany:VDIVerlag, 1993.