【正文】
nd with a high resolution photothermal microscope. J. Appl. Phys. 81, 2966–2972 (1997).47. Reichling, M., Klotzbucher, T. amp。 Hartmann, J. Local variation of roomtemperature thermal conductivity in highquality polycrystalline diamond. Appl. Phys. Lett. 73, 756–758 (1998).48. Philip, J. et al. Elastic, mechanical and thermal properties of nanocrystalline diamond films. J. Appl. Phys. 93, 2164–2171 (2003).49. Angadi, M. A. et al. Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films. J. Appl. Phys. 99, 114301 (2006).50. Liu, W. L. et al. Thermal conduction in nanocrystalline diamond thin films: Effect of grain boundary scattering and nitrogen doping. Appl. Phys. Lett. 89, 171915 (2006).51. Shamsa, M. et al. Thermal conductivity of nitrogened ultrananocrystalline diamond films on silicon. J. Appl. Phys. 103, 083538 (2008).52. Khitun, A., Balandin, A., Liu, J. L. amp。 Wang, K. L. Inplane lattice thermal conductivity of quantumdot superlattice. J. Appl. Phys. 88, 696–699 (2000).53. Braginsky, L., Shklover, V., Hofmann, H. amp。 Bowen, P. Hightemperature thermal conductivity of porous Al2O3 nanostructures. Phys. Rev. B 70, 134201 (2004).54. Ferrari, A. C. amp。 Robertson, J. Origin of the 1,150 cm1 Raman mode in nanocrystalline diamond. Phys. Rev. B 63, 121405 (2001).55. Goyal, V., Subrina, S., Nika, D. L. amp。 Balandin, A. A. Reduced thermal resistance of the siliconsynthetic diamond posite substrate at elevated temperatures. Appl. Phys. Lett. 97, 031904 (2010).56. Saito, K. amp。 Dhar, A. Heat conduction in a three dimensional anharmonic crystal. Phys. Rev. Lett. 104, 040601 (2010).57. Lippi, A. amp。 Livi, R. Heat conduction in twodimensional nonlinear lattices. J. Stat. Phys. 100, 1147–1172 (2000).58. Yang, L. Finite heat conduction in a 2D disorder lattice. Phys. Rev. Lett. 88, 094301 (2002).59. Dhar, A. Heat conduction in the disordered harmonic chain revisited. Phys. Rev. Lett. 86, 5882–5885 (2001).60. Casher, A. amp。 Lebowitz, J. L. Heat flow in regular and disordered harmonic chains. J. Math. Phys. 12, 1701–1711 (1971). 61. Klemens, P. G. Theory of thermal conduction in the ceramic films. Int. J. Thermophys. 22, 265–275 (2001).62. Nika, D. L., Ghosh, S., Pokatilov, E. P. amp。 Balandin, A. A. Lattice thermal conductivity of graphene flakes: Comparison and bulk graphite. Appl. Phys. Lett. 94, 203103 (2009).63. Hone, J., Whitney, M., Piskoti, C. amp。 Zettl, A. Thermal conductivity of singlewalled carbon nanotubes. Phys. Rev. B 59, R2514–R2516 (1999).64. Yu, C. H., Shi, L., Yao, Z., Li, D. Y. amp。 Majumdar, A. Thermal conductance and thermopower of an singlewall carbon nanotubes. Nano Lett. 5, 1842–1846 (2005).65. Fujii, M. et al. Measuring thermal conductivity of a single carbon nanotube. Phys. Rev. Lett. 95, 065502 (2005).66. Berber, S., Kwon, YK. amp。 Tomanek, D. Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84, 4613–4616 (2000).67. Che, J., Cagin, T. amp。 Goddard, W. A. III Thermal conductivity of carbon nanotubes. Nanotechnology 11, 65–69 (2000).68. Osman, M. A. amp。 Srivastava, D. Temperature dependence of thermal conductivity of singlewall carbon nanotubes. Nanotechnology 12, 21–24 (2001).69. Lindsay, L., Broido, D. A. amp。 Mingo, N. Diameter dependence of carbon nanotube thermal conductivity and extension to the graphene limit. Phys. Rev. B 82, 161402 (2010).70. Donadio, D. amp。 Galli, G. Thermal conductivity of isolated and interacting carbon nanotubes: Comparing results from molecular dynamics and the Boltzmann transport equation. Phys. Rev. Lett. 99, 255502 (2007).71. Chang, C. W. et al. Isotope effect on the thermal conductivity of boron nitride nanotubes. Phys. Rev. Lett. 97, 085901 (2006).72. Rego, L. C. G. amp。 Kirczenow, G. Fractional exclusion statistics and the universal quantum of thermal conductance: A unifying approach. Phys. Rev. B 59, 13080–13086 (1999).73. Ghosh, S., Nika, D. L., Pokatilov, E. P. amp。 Balandin, A. A. Heat conduction in graphene: Experimental study and theoretical interpretation. New J. Phys. 11, 095012 (2009).74. Ghosh, S. et al. Dimensional crossover of thermal transport in fewlayer graphene. Nature Mater. 9, 555–558 (2010).75. Cai, W. et al. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 10, 1645–1651 (2010).76. Faugeras, C. et al. Thermal conductivity of graphene in Corbino membrane geometry. ACS Nano 4, 1889–1892 (2010).77. Jauregui, L. A. et al. Thermal transport in graphene nanostructures: Experiments and simulations. ECS Trans. 28, 73–83 (2010).78. Seol, J. H. et al. Twodimensional phonon transport in supported graphene. Science 328, 213–216 (2010).79. Murali, R., Yang, Y., Brenner, K., Beck, T. amp。 Meindl, J. D. Breakdown current density of graphene nanoribbons. Appl. Phys. Lett. 94, 243114 (2009).80. Zhong, W. R., Zhang, M. P., Ai, B. Q. amp。 Zheng, D. Q. Chirality and thicknessdependent thermal conductivity of fewlayer graphene: A molecular dynamics study. Appl. Phys. Lett. 98, 113107 (2011).81. Singh, D., Murthy, J. Y. amp。 Fisher, T. S. Mechanism of thermal conductivity reduction in fewlayer graphene. Preprint at (2011).82. Jang, W., Chen, Z., Bao, W., Lau, C. N. amp。 Dames, C. Thicknessdependent thermal conductivity of encased graphene and ultrathin graphite. Nano Lett. 10, 3909–3913 (2010).83. Nika, D. L., Pokatilov, E. P., Askerov, A. S. amp。 Balandin, A. A. Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering. Phys. Rev. B 79, 155413 (2009).84. Evans, W. J., Hu, L. amp。 Keblinsky, P. Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: Effect of ribbon width, edge roughness, and hydrogen termination. Appl. Phys. Lett. 96, 203112 (2010).85. Lindsay, L., Broido, D. A. amp。 Mingo, N. Flexural phonons and thermal transport in graphene. Phys. Rev. B 82, 115427 (2010).86. Munoz, E., Lu