freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

虛擬社區(qū)漫游系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)-資料下載頁(yè)

2025-07-29 08:47本頁(yè)面
  

【正文】 elative to other pixels in the scene and with respect to their absolute position within some defined map projection. If left uncorrected, these geometric distortions render any data extracted from the image useless. This is particularly so if the information is to be pared to other data sets, be it from another image or a GIS data set. Distortions occur for many reasons. For instance distortions occur due to changes in platform attitude (roll, pitch and yaw), altitude, earth rotation, earth curvature, panoramic distortion and detector delay. Most of these distortions can be modelled mathematically and are removed before you buy an image. Changes in attitude however can be difficult to account for mathematically and so a procedure called image rectification is performed. Satellite systems are however geometrically quite stable and geometric rectification is a simple procedure based on a mapping transformation relating real ground coordinates, say in easting and northing, to image line and pixel coordinates.Rectification is a process of geometrically correcting an image so that it can be represented on a planar surface , conform to other images or conform to a map (Fig. 3). That is, it is the process by which geometry of an image is made planimetric. It is necessary when accurate area, distance and direction measurements are required to be made from the imagery. It is achieved by transforming the data from one grid system into another grid system using a geometric transformation.Rectification is not necessary if there is no distortion in the image. For example, if an image file is produced by scanning or digitizing a paper map that is in the desired projection system, then that image is already planar and does not require rectification unless there is some skew or rotation of the image. Scanning and digitizing produce images that are planar, but do not contain any map coordinate information. These images need only to be georeferenced, which is a much simpler process than rectification. In many cases, the image header can simply be updated with new map coordinate information. This involves redefining the map coordinate of the upper left corner of the image and the cell size (the area represented by each pixel).Ground Control Points (GCP) are the specific pixels in the input image for which the output map coordinates are known. By using more points than necessary to solve the transformation equations a least squares solution may be found that minimises the sum of the squares of the errors. Care should be exercised when selecting ground control points as their number, quality and distribution affect the result of the rectification.Once the mapping transformation has been determined a procedure called resampling is employed. Resampling matches the coordinates of image pixels to their real world coordinates and writes a new image on a pixel by pixel basis. Since the grid of pixels in the source image rarely matches the grid for the reference image, the pixels are resampled so that new data file values for the output file can be calculated.IMAGE ENHANCEMENT TECHNIQUES Image enhancement techniques improve the quality of an image as perceived by a human. These techniques are most useful because many satellite images when examined on a colour display give inadequate information for image interpretation. There is no conscious effort to improve the fidelity of the image with regard to some ideal form of the image. There exists a wide variety of techniques for improving image quality. The contrast stretch, density slicing, edge enhancement, and spatial filtering are the more monly used techniques. Image enhancement is attempted after the image is corrected for geometric and radiometric distortions. Image enhancement methods are applied separately to each band of a multispectral image. Digital techniques have been found to be most satisfactory than the photographic technique for image enhancement, because of the precision and wide variety of digital processes.ContrastContrast generally refers to the difference in luminance or grey level values in an image and is an important characteristic. It can be defined as the ratio of the maximum intensity to the minimum intensity over an image.Contrast ratio has a strong bearing on the resolving power and detectability of an image. Larger this ratio, more easy it is to interpret the image. Satellite images lack adequate contrast and require contrast improvement.Contrast EnhancementContrast enhancement techniques expand the range of brightness values in an image so that the image can be efficiently displayed in a manner desired by the analyst. The density values in a scene are literally pulled farther apart, that is, expanded over a greater range. The effect is to increase the visual contrast between two areas of different uniform densities. This enables the analyst to discriminate easily between areas initially having a small difference in density.Linear Contrast StretchThis is the simplest contrast stretch algorithm. The grey values in the original image and the modified image follow a linear relation in this algorithm. A density number in the low range of the original histogram is assigned to extremely black and a value at the high end is assigned to extremely white. The remaining pixel values are distributed linearly between these extremes. The features or details that were obscure on the original image will be clear in the contrast stretched image. Linear contrast stretch operation can be represented graphically as shown in Fig. 4. To provide optimal contrast and colour variation in colour posites the small range of grey values in each band is stretched to the full brightness range of the output or display unit.NonLinear Contrast EnhancementIn these methods, the input and output data values follow a nonlinear transformation. The general form of the nonlinear contrast enhancement is defined by y = f (x), where x is the input data value and y
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1