【正文】
化表面不會再有鈍化發(fā)生,所以在Eq中N=(如方程Eq(2)),這和方程(8)的結果是相互吻合的。隨著平穩(wěn)載荷頻率的減小,金屬的疲勞斷裂生長率逐漸的增加到接近于數值(m1)。進一步的減小頻率將不會改變金屬的疲勞斷裂生長率。因此,根據方程Eq(13),為了使鋼在高溫水獲得好的綜合性能加載頻率應該隨著的增加而減?。? (14)其中是表示在周期內載荷減少時持續(xù)的時間。這個結論可以從方程(17)中得出同時也可以通過方程(19)測試得出。因此,這個在高溫水介質作用下金屬里氫的成分對疲勞斷裂生長率的影響的模型準確無誤的反應了實驗的結果。在方程(11)中當m=1和r=,R=。圖4:腐蝕部位的裂紋擴張率(1,2可以由方程Eq(9)計算得出),氫脆(3,4可以由Eq(11)計算得出),比率其中SIF屬于(5,6)當增加時會導致整個剛才的腐蝕損耗增加。通過這些事實可以得出在高溫水介質中大幅度的增加耐熱鋼的FCG將會在金屬的斷裂處形成氫脆。因此耐熱鋼在高溫水介質中的效應模型從數量上和質量上準確無誤的反映了實驗結果,這將在盡可能的基礎上減少非常昂貴和費時的測試的樣本量,以獲得頻率和和不對稱周期載荷對耐熱鋼的影響所需的數據。相對于巴黎方程,方程Eq(2)的使用更能準確地計算出在裂紋擴展階段的設備耐力。參考文獻:1. . Knott, Effect of the medium on crack growth in monotonic and cyclic loading, in:Corrosion Fatigue of Metals, Proceedings of the Ist SovietBritish Seminar, Naukova Dumka, Kiev (1982), pp. 738.2. . Ford and P. W. Emig, The prediction of the maximum fatigue life crack propagation rate in the low alloy steeldeoxygenated water system at 288~ Corros. Sci., 25, , 673692 (1985).3. . Thomas, A. Alavi, and R. P. Wei, Correlation between electrochemical reaction with bare surfaces and corrosion fatigue crack growth in steels, Scripta Metall., 20,No. 7, 10151018 (1986).4. . Polyanskii, Role of hydrogen embrittlement in corrosion cracking of aluminum alloys, . Mekh. Mater., No. 4, 917 (1985).5. . Scott and A. E. Truswell, Corrosion between crack growth in reactor pressure vessel steels in PWR primary water, Trans. ASME. J. Pressure Vessel Technol., 105, , 245254 (1983).6. . Wei and J. D. Landes, Correlation between sustained load and fatigue crack growth in highstrength steel, Mater. Res. Stand., ~, No. 7, 2527 (1969).7. . Wei and M. Gao, Reconsideration of the superposition model for environmentally assisted fatigue growth, Scripta Metall., 17, No. 7, 959962 (1983).8. . Barsom, Effect cyclic stress form on corrosion fatigue crack propagation below K1scc in a high yield strength steel, in: Corrosion Fatigue, NACE 2 (1972), pp. 424426.9. . Gnyp, E. I. Lychkovskii, and V. F. Kondrat, Calculation of the distribution of the electrical field in39。metallic slits with a corrosive medium, report I, . Mater., No. I, 1419 (1987).10. E. I. LychkovsLii, Problem of modeling electrochemical processes at the crack tip, . Mekh. Mater~ No. 3, 3335 (1987).11. R. Nichols, Evaluation of the fracture resistance of materials on the basis of critical crack opening, in: New Methods of Evaluating the Brittle Fracture Resistance of Metals[Russian translation], Mir, Moscow (1972), ppo 1189.12. V. V. Panasyuk, A. E. Andreikiv, and S. Eo Kovchik, Methods of Evaluating the Cracking Resistance of Structural Materials [in Russian], Naukova Dumka, Kiev (1977).13. L. N. Petrov, Stress Corrosion [in Russian], Vishcha Shkola, Kiev (1986)14. A. M. Sukhotin, E. Vo Sapekleva, and Mo Do Reingeverts, Investigation of passivating film on iron by proton diffusion method, Corros. Sci., 25, No. 2, 9398 (1985).15. P. Mclntyre, Interaction of hydrogen with steel in cyclic loading, in: Corrosion Fatigue of Metals, Proceedings of the ist SovietBritish Seminar, Naukova Dumka, Kiev(1982), pp. 121146.16. I. P. Gnyp, Phenomenological aspects of the effect of the parameters of cyclic loading on the corrosion fatigue crack growth, . Mekh. Mater., No. 4, 4044 (1984).17. V. I. Pokhmurskii and I. P. Gnyp, Effect of cyclic loading and aqueous media on crack growth rate in steels, FizoKhim. Mekh. Mater., No. 3, 2877 (1985).18. R. P. Wei, Electrochemical reaction and fatigue crack growth response, in: Corrosion in Power Generation Equipment, Proceedings of 8th International Brown Boveri Symposium,Baden, September 1920, 1983, published London (1984), pp. 169174.19. W. A. Van Der Sluys and R. H. Emanuelson, Cyclic crack growth behaviour of reactor pressure vessel steels in light water reactor environments, Trans. ASME. J. Eng. ., 108, NO 1, 2630 (1986).20. O. N. Romaniv and G. No Nikiforchin, Mechanics of Corrosion Failure of Structural Alloys[in Russian], Metallurgiya, Moscow (1986) 。21. J. J. W. Nibbering, Behaviour of mild steel under very low frequency loading in seawater,Corros. Sci., 23, No. 6, 645662 (1983).22. T. Terber, D. Hild, and E. Kiss, 39。!Fatigue crack growth in A508C12 steels in highpurity water heated to high temperature, Russian translation of Trans. ASME, J. Basic Eng.,No. 4, 1320 (1974).23. M. Sumida , Behavior of fatigue crack growth in the structure of high~trength steels in various types of aqueous medium, TetsutoHagane, 69, No. 3, 428436 (1983) (translation no. 06649, VTsP, 1984).24. ASME Boiler and Pressure Vessel Code, Section XI, Appendix A, Rules for Inservice Inspection of Nuclear Power Plant Components, ASME, New York (1980), pp. 221241.外語原文致謝首先我要感謝我的導師吳振卿教授。作為一個本科生,一直以來我學習成績一般,科學研究經驗更是匱乏,難以獨立完成畢業(yè)設計,本研究是在恩師吳振卿教授的全力指導下完成的,吳老師注重研究深入,更是要求我抓好基礎知識,從畢業(yè)設計的選題、實驗內容的制定和施行再到最后的論文,吳老師多次對我進行細心的指導和鼓勵。吳老師要求嚴格,對待研究設計一絲不茍,多次和我一起進行論文的查核,在此我由衷地感謝您,我的老師!我要感謝我的學長王贊斌碩士,他多次帶我走進實驗室,指導我完成畢業(yè)設計實驗。感謝與我同組的三名本科生,我們經常在一起討論實驗思路和實驗進程、相互鼓勵和督促。我要感謝我的學院為我做畢業(yè)設計提供的良好環(huán)境,為了方便進行畢業(yè)設計,學院組織我們進行校區(qū)搬遷,感謝實驗室老師對我提供的支持和幫助。隨著畢業(yè)論文的完成,也意味著大學四年的學習即將畫上句號,四年的求學生涯在老師、同學和朋友的大力支持下已臨近帷幕,走得辛苦卻也受益良多,在此我要感謝大家,謝謝