freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

全文搜索引擎的設(shè)計與實現(xiàn)-外文翻譯-資料下載頁

2025-01-18 14:15本頁面
  

【正文】 API call and the appearance of free space in the cluster. 中文譯本原文地址:一、引言 Hadoop分布式文件系統(tǒng)(HDFS)被設(shè)計成適合運行在通用硬件(modity hardware)上的分布式文件系統(tǒng)。它和現(xiàn)有的分布式文件系統(tǒng)有很多共同點。但同時,它和其他的分布式文件系統(tǒng)的區(qū)別也是很明顯的。HDFS是一個高度容錯性的系統(tǒng),適合部署在廉價的機器上。HDFS能提供高吞吐量的數(shù)據(jù)訪問,非常適合大規(guī)模數(shù)據(jù)集上的應(yīng)用。HDFS放寬了一部分POSIX約束,來實現(xiàn)流式讀取文件系統(tǒng)數(shù)據(jù)的目的。HDFS在最開始是作為Apache Nutch搜索引擎項目的基礎(chǔ)架構(gòu)而開發(fā)的。HDFS是Apache Hadoop Core項目的一部分。這個項目的地址是。 二、前提和設(shè)計目標(biāo) 硬件錯誤 硬件錯誤是常態(tài)而不是異常。HDFS可能由成百上千的服務(wù)器所構(gòu)成,每個服務(wù)器上存儲著文件系統(tǒng)的部分?jǐn)?shù)據(jù)。我們面對的現(xiàn)實是構(gòu)成系統(tǒng)的組件數(shù)目是巨大的,而且任一組件都有可能失效,這意味著總是有一部分HDFS的組件是不工作的。因此錯誤檢測和快速、自動的恢復(fù)是HDFS最核心的架構(gòu)目標(biāo)。 流式數(shù)據(jù)訪問 運行在HDFS上的應(yīng)用和普通的應(yīng)用不同,需要流式訪問它們的數(shù)據(jù)集。HDFS的設(shè)計中更多的考慮到了數(shù)據(jù)批處理,而不是用戶交互處理。比之?dāng)?shù)據(jù)訪問的低延遲問題,更關(guān)鍵的在于數(shù)據(jù)訪問的高吞吐量。POSIX標(biāo)準(zhǔn)設(shè)置的很多硬性約束對HDFS應(yīng)用系統(tǒng)不是必需的。為了提高數(shù)據(jù)的吞吐量,在一些關(guān)鍵方面對POSIX的語義做了一些修改。 大規(guī)模數(shù)據(jù)集 運行在HDFS上的應(yīng)用具有很大的數(shù)據(jù)集。HDFS上的一個典型文件大小一般都在G字節(jié)至T字節(jié)。因此,HDFS被調(diào)節(jié)以支持大文件存儲。它應(yīng)該能提供整體上高的數(shù)據(jù)傳輸帶寬,能在一個集群里擴展到數(shù)百個節(jié)點。一個單一的HDFS實例應(yīng)該能支撐數(shù)以千萬計的文件。 簡單的一致性模型 HDFS應(yīng)用需要一個“一次寫入多次讀取”的文件訪問模型。一個文件經(jīng)過創(chuàng)建、寫入和關(guān)閉之后就不需要改變。這一假設(shè)簡化了數(shù)據(jù)一致性問題,并且使高吞吐量的數(shù)據(jù)訪問成為可能。Map/Reduce應(yīng)用或者網(wǎng)絡(luò)爬蟲應(yīng)用都非常適合這個模型。目前還有計劃在將來擴充這個模型,使之支持文件的附加寫操作。 “移動計算比移動數(shù)據(jù)更劃算” 一個應(yīng)用請求的計算,離它操作的數(shù)據(jù)越近就越高效,在數(shù)據(jù)達(dá)到海量級別的時候更是如此。因為這樣就能降低網(wǎng)絡(luò)阻塞的影響,提高系統(tǒng)數(shù)據(jù)的吞吐量。將計算移動到數(shù)據(jù)附近,比之將數(shù)據(jù)移動到應(yīng)用所在顯然更好。HDFS為應(yīng)用提供了將它們自己移動到數(shù)據(jù)附近的接口。 HDFS在設(shè)計的時候就考慮到平臺的可移植性。這種特性方便了HDFS作為大規(guī)模數(shù)據(jù)應(yīng)用平臺的推廣。 三、Namenode 和 Datanode HDFS采用master/slave架構(gòu)。一個HDFS集群是由一個Namenode和一定數(shù)目的Datanodes組成。Namenode是一個中心服務(wù)器,負(fù)責(zé)管理文件系統(tǒng)的名字空間(namespace)以及客戶端對文件的訪問。集群中的Datanode一般是一個節(jié)點一個,負(fù)責(zé)管理它所在節(jié)點上的存儲。HDFS暴露了文件系統(tǒng)的名字空間,用戶能夠以文件的形式在上面存儲數(shù)據(jù)。從內(nèi)部看,一個文件其實被分成一個或多個數(shù)據(jù)塊,這些塊存儲在一組Datanode上。Namenode執(zhí)行文件系統(tǒng)的名字空間操作,比如打開、關(guān)閉、重命名文件或目錄。它也負(fù)責(zé)確定數(shù)據(jù)塊到具體Datanode節(jié)點的映射。Datanode負(fù)責(zé)處理文件系統(tǒng)客戶端的讀寫請求。在Namenode的統(tǒng)一調(diào)度下進(jìn)行數(shù)據(jù)塊的創(chuàng)建、刪除和復(fù)制。 Namenode和Datanode被設(shè)計成可以在普通的商用機器上運行。這些機器一般運行著GNU/Linux操作系統(tǒng)(OS)。HDFS采用Java語言開發(fā),因此任何支持Java的機器都可以部署Namenode或Datanode。由于采用了可移植性極強的Java語言,使得HDFS可以部署到多種類型的機器上。一個典型的部署場景是一臺機器上只運行一個Namenode實例,而集群中的其它機器分別運行一個Datanode實例。這種架構(gòu)并不排斥在一臺機器上運行多個Datanode,只不過這樣的情況比較少見。 集群中單一Namenode的結(jié)構(gòu)大大簡化了系統(tǒng)的架構(gòu)。Namenode是所有HDFS元數(shù)據(jù)的仲裁者和管理者,這樣,用戶數(shù)據(jù)永遠(yuǎn)不會流過Namenode。 四、文件系統(tǒng)的名字空間 (namespace) HDFS支持傳統(tǒng)的層次型文件組織結(jié)構(gòu)。用戶或者應(yīng)用程序可以創(chuàng)建目錄,然后將文件保存在這些目錄里。文件系統(tǒng)名字空間的層次結(jié)構(gòu)和大多數(shù)現(xiàn)有的文件系統(tǒng)類似:用戶可以創(chuàng)建、刪除、移動或重命名文件。當(dāng)前,HDFS不支持用戶磁盤配額和訪問權(quán)限控制,也不支持硬鏈接和軟鏈接。但是HDFS架構(gòu)并不排斥實現(xiàn)這些特性。 Namenode負(fù)責(zé)維護(hù)文件系統(tǒng)的名字空間,任何對文件系統(tǒng)名字空間或?qū)傩缘男薷亩紝⒈籒amenode記錄下來。應(yīng)用程序可以設(shè)置HDFS保存的文件的副本數(shù)目。文件副本的數(shù)目稱為文件的副本系數(shù),這個信息也是由Namenode保存的。五、數(shù)據(jù)復(fù)制 HDFS被設(shè)計成能夠在一個大集群中跨機器可靠地存儲超大文件。它將每個文件存儲成一系列的數(shù)據(jù)塊,除了最后一個,所有的數(shù)據(jù)塊都是同樣大小的。為了容錯,文件的所有數(shù)據(jù)塊都會有副本。每個文件的數(shù)據(jù)塊大小和副本系數(shù)都是可配置的。應(yīng)用程序可以指定某個文件的副本數(shù)目。副本系數(shù)可以在文件創(chuàng)建的時候指定,也可以在之后改變。HDFS中的文件都是一次性寫入的,并且嚴(yán)格要求在任何時候只能有一個寫入者。 Namenode全權(quán)管理數(shù)據(jù)塊的復(fù)制,它周期性地從集群中的每個Datanode接收心跳信號和塊狀態(tài)報告(Blockreport)。接收到心跳信號意味著該Datanode節(jié)點工作正常。塊狀態(tài)報告包含了一個該Datanode上所有數(shù)據(jù)塊的列表。 副本存放: 最最開始的一步 副本的存放是HDFS可靠性和性能的關(guān)鍵。優(yōu)化的副本存放策略是HDFS區(qū)分于其他大部分分布式文件系統(tǒng)的重要特性。這種特性需要做大量的調(diào)優(yōu),并需要經(jīng)驗的積累。HDFS采用一種稱為機架感知(rackaware)的策略來改進(jìn)數(shù)據(jù)的可靠性、可用性和網(wǎng)絡(luò)帶寬的利用率。目前實現(xiàn)的副本存放策略只是在這個方向上的第一步。實現(xiàn)這個策略的短期目標(biāo)是驗證它在生產(chǎn)環(huán)境下的有效性,觀察它的行為,為實現(xiàn)更先進(jìn)的策略打下測試和研究的基礎(chǔ)。 大型HDFS實例一般運行在跨越多個機架的計算機組成的集群上,不同機架上的兩臺機器之間的通訊需要經(jīng)過交換機。在大多數(shù)情況下,同一個機架內(nèi)的兩臺機器間的帶寬會比不同機架的兩臺機器間的帶寬大。 通過一個機架感知的過程,Namenode可以確定每個Datanode所屬的機架id。一個簡單但沒有優(yōu)化的策略就是將副本存放在不同的機架上。這樣可以有效防止當(dāng)整個機架失效時數(shù)據(jù)的丟失,并且允許讀數(shù)據(jù)的時候充分利用多個機架的帶寬。這種策略設(shè)置可以將副本均勻分布在集群中,有利于當(dāng)組件失效情況下的負(fù)載均衡。但是,因為這種策略的一個寫操作需要傳輸數(shù)據(jù)塊到多個機架,這增加了寫的代價。 在大多數(shù)情況下,副本系數(shù)是3,HDFS的存放策略是將一個副本存放在本地機架的節(jié)點上,一個副本放在同一機架的另一個節(jié)點上,最后一個副本放在不同機架的節(jié)點上。這種策略減少了機架間的數(shù)據(jù)傳輸,這就提高了寫操作的效率。機架的錯誤遠(yuǎn)遠(yuǎn)比節(jié)點的錯誤少,所以這個策略不會影響到數(shù)據(jù)的可靠性和可用性。于此同時,因為數(shù)據(jù)塊只放在兩個(不是三個)不同的機架上,所以此策略減少了讀取數(shù)據(jù)時需要的網(wǎng)絡(luò)傳輸總帶寬。在這種策略下,副本并不是均勻分布在不同的機架上。三分之一的副本在一個節(jié)點上,三分之二的副本在一個機架上,其他副本均勻分布在剩下的機架中,這一策略在不損害數(shù)據(jù)可靠性和讀取性能的情況下改進(jìn)了寫的性能。 當(dāng)前,這里介紹的默認(rèn)副本存放策略正在開發(fā)的過程中。 副本選擇 為了降低整體的帶寬消耗和讀取延時,HDFS會盡量讓讀取程序讀取離它最近的副本。如果在讀取程序的同一個機架上有一個副本,那么就讀取該副本。如果一個HDFS集群跨越多個數(shù)據(jù)中心,那么客戶端也將首先讀本地數(shù)據(jù)中心的副本。 安全模式 Namenode啟動后會進(jìn)入一個稱為安全模式的特殊狀態(tài)。處于安全模式的Namenode是不會進(jìn)行數(shù)據(jù)塊的復(fù)制的。Namenode從所有的Datanode接收心跳信號和塊狀態(tài)報告。塊狀態(tài)報告包括了某個Datanode所有的數(shù)據(jù)塊列表。每個數(shù)據(jù)塊都有一個指定的最小副本數(shù)。當(dāng)Namenode檢測確認(rèn)某個數(shù)據(jù)塊的副本數(shù)目達(dá)到這個最小值,那么該數(shù)據(jù)塊就會被認(rèn)為是副本安全(safely replicated)的;在一定百分比(這個參數(shù)可配置)的數(shù)據(jù)塊被Namenode檢測確認(rèn)是安全之后(加上一個額外的30秒等待時間),Namenode將退出安全模式狀態(tài)。接下來它會確定還有哪些數(shù)據(jù)塊的副本沒有達(dá)到指定數(shù)目,并將這些數(shù)據(jù)塊復(fù)制到其他Datanode上。 六、文件系統(tǒng)元數(shù)據(jù)的持久化 Namenode上保存著HDFS的名字空間。對于任何對文件系統(tǒng)元數(shù)據(jù)產(chǎn)生修改的操作,Namenode都會使用一種稱為EditLog的事務(wù)日志記錄下來。例如,在HDFS中創(chuàng)建一個文件,Namenode就會在Editlog中插入一條記錄來表示;同樣地,修改文件的副本系數(shù)也將往Editlog插入一條記錄。Namenode在本地操作系統(tǒng)的文件系統(tǒng)中存儲這個Editlog。整個文件系統(tǒng)的名字空間,包括數(shù)據(jù)塊到文件的映射、文件的屬性等,都存儲在一個稱為FsImage的文件中,這個文件也是放在Namenode所在的本地文件系統(tǒng)上。 Namenode在內(nèi)存中保存著整個文件系統(tǒng)的名字空間和文件數(shù)據(jù)塊映射(Blockmap)的映像。這個關(guān)鍵的元數(shù)據(jù)結(jié)構(gòu)設(shè)計得很緊湊,因而一個有4G內(nèi)存的Namenode足夠支撐大量的文件和目錄。當(dāng)Namenode啟動時,它從硬盤中讀取Editlog和FsImage,將所有Editlog中的事務(wù)作用在內(nèi)存中的FsImage上,并將這個新版本的FsImage從內(nèi)存中保存到本地磁盤上,然后刪除舊的Editlog,因為這個舊的Editlog的事務(wù)都已經(jīng)作用在FsImage上了。這個過程稱為一個檢查點(checkpoint)。在當(dāng)前實現(xiàn)中,檢查點只發(fā)生在Namenode啟動時,在不久的將來將實現(xiàn)支持周期性的檢查點。 Datanode將HDFS數(shù)據(jù)以文件的形式存儲在本地的文件系統(tǒng)中,它并不知道有關(guān)HDFS文件的信息。它把每個HDFS數(shù)據(jù)塊存儲在本地文件系統(tǒng)的一個單獨的文件中。Datanode并不在同一個目錄創(chuàng)建所有的文件,實際上,它用試探的方法來確定每個目錄的最佳文件數(shù)目,并且在適當(dāng)?shù)臅r候創(chuàng)建子目錄。在同一個目錄中創(chuàng)建所有的本地文件并不是最優(yōu)的選擇,這是因為本地文件系統(tǒng)可能無法高效地在單個目錄中支持大量的文件。當(dāng)一個Datanode啟動時,它會掃描本地文件系統(tǒng),產(chǎn)生一個這些本地文件對應(yīng)的所有HDFS數(shù)據(jù)塊的列表,然后作為報告發(fā)送到Namenode,這個報告就是塊狀態(tài)報告。 七、通訊協(xié)議 所有的HDFS通訊協(xié)議都是建立在TCP/IP協(xié)議之上。客戶端通過一個可配置的TCP端口連接到Namenode,通過ClientProtocol協(xié)議與Namenode交互。而Datanode使用DatanodeProtocol協(xié)議與Namenode交互。一個遠(yuǎn)程過程調(diào)用(RPC)模型被抽象出來封裝ClientProtocol和Datanodeprotocol協(xié)議。在設(shè)計上,Namenode不會主動發(fā)起RPC,而是響應(yīng)來自客戶端或 Datanode 的RPC請求。 八、健壯性 HDFS的主要目標(biāo)就是即使在出錯的情況下也要保證數(shù)據(jù)存儲的可靠性。常見的三種出錯情況是:Namenode出錯, Datanode出錯和網(wǎng)絡(luò)割裂(network partitions)。 磁盤數(shù)據(jù)錯誤、心跳檢測和重新復(fù)制 每個Datanode節(jié)點周期性地向Namenode發(fā)送心跳信號。網(wǎng)絡(luò)割裂可能導(dǎo)致一部分Datanode跟Namenode失去聯(lián)系。Namenode通過心跳信號的缺失來檢測這一情況,并將這些近期不再發(fā)送心跳信號Datanode標(biāo)記為dead,不會再將新的IO請求發(fā)給它們。任何存儲在dead Datanode上的數(shù)據(jù)將不再有效。Datanode的dead可能會引起一些數(shù)據(jù)塊的副本系數(shù)低于指定值,Namenode不斷地檢測這些需要復(fù)制的數(shù)據(jù)塊,一旦發(fā)現(xiàn)就啟動復(fù)制操作。在下列情況下,可能需要重新復(fù)制:某個Datanode節(jié)點失效,某個副本遭到損壞,Datanode上的硬盤錯誤,或者文件的副本系數(shù)增大。 集群均衡 HDFS的架構(gòu)支持?jǐn)?shù)據(jù)均衡策略。如果某個Datanode節(jié)點上的空閑空間低于特定的臨界點,按照均衡策略系統(tǒng)就會自動地將數(shù)據(jù)從這個Datanode移動到其他空閑的Datanode。當(dāng)對某個文件的請求突然增加,那么也可能啟動一個計劃創(chuàng)建該文件新的副本,并且同時重新平衡集群中的其他數(shù)據(jù)。這些均衡策略目前還沒有實現(xiàn)。 數(shù)據(jù)完整性 從某個Datanode獲取的數(shù)據(jù)塊有可能是損壞的,損壞可能是由Datanode的存儲設(shè)備錯誤、網(wǎng)絡(luò)錯誤或者軟件bug造成的。HDFS客戶端軟件實現(xiàn)了對HDFS文件內(nèi)容的校驗和(checksum)檢查。當(dāng)客戶端創(chuàng)建一個新的HDFS文件,會計算這個文件每個數(shù)據(jù)塊的校驗和,并將校驗和作為一個單獨的隱藏文件保存在同一個HDFS名字空間下。當(dāng)客戶端獲取文件內(nèi)容后,它會檢驗從Datanode獲取的數(shù)據(jù)跟相應(yīng)的校驗和文件中的校驗和是否匹配,如果不匹配,客戶端可以選擇從其他Datanode獲取該數(shù)據(jù)塊的副本。 元數(shù)據(jù)磁盤錯誤 FsImage和Editlog是HDFS的核心數(shù)據(jù)結(jié)構(gòu)。如果這些文件損壞了,整個HDFS實例都將失效。因而,Namenode可以配置成支持維護(hù)多個FsImage和Editlog的副本。任何對FsImage或者Editlog的修改,都將同步到它們的副本上。這種多副本的同步操作可能會降低Namenode每秒處理的名字空間事務(wù)數(shù)量。然而這個代價是可以接受的,因為即使HDFS的應(yīng)用是數(shù)據(jù)密集的,它們也
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1