【正文】
公稱直徑為 125 的接管材料: Q245R 許用應(yīng)力: ? ? 113t Mpa? ? ??rf 接管有效厚度: 接管選用φ 133 4mm mmCntet 3??? ?? 開(kāi)孔所需補(bǔ)強(qiáng)面積: 22 ( 1 ) 13 4 3. 05 2 3 3. 05 ( 1 0. 99 ) 40 9e t rA d f m m? ? ?? ? ? ? ? ? ? ? ? ? ? 有效補(bǔ)強(qiáng)范圍: B=2d=268 15822 ???? ntndB ?? 取其中大者 其 中 n? 為殼體開(kāi)孔處名義厚度, nt? 為接管名義厚度。 故 B=268 有效高度: 外側(cè): mmdh nt 3 41 ???? ? mmh 1501 ? (實(shí)際外伸高度 ) 故 1h =24mm 內(nèi)側(cè): mmdh nt 3 42 ???? ? 南華大學(xué)機(jī)械工程學(xué)院畢業(yè)設(shè)計(jì) 第 41 頁(yè) 共 62 頁(yè) 2h =30(實(shí)際內(nèi)伸高度) 取其中小者 故 2h =24mm 有效補(bǔ)強(qiáng)面積: 多余金屬面積: 1A 筒體 mme 7?? ? ?? ? ? ?? ?21))((32))(134268(12mmfdBA reete??????????????? ????? 接管多余金屬面積: 2A 接管計(jì)算厚度: ? ? mmPdP cts ice ???? ???? ??? 22212)13()(242)(2)(2mmfChfhA retrtet??????????????? ??? 接管區(qū)焊縫面積: 3A (焊腳取 ) 23 12 4 4 1 62A m m? ? ? ? ? 有效補(bǔ)強(qiáng)面積: AmmAAAA e ???????? 1 6 2 9321 則開(kāi)孔后不需另行補(bǔ)強(qiáng)。 公稱直徑為 350 的接管材料: 0Cr19Ni9Ti 許用應(yīng)力: ? ? 137t Mpa? ? 413 7 ???rf , 故取 rf =1 接管有效厚度: 接管選用φ 377 6mm mmCntet 5??? ?? 南華大學(xué)機(jī)械工程學(xué)院畢業(yè)設(shè)計(jì) 第 42 頁(yè) 共 62 頁(yè) 開(kāi)孔所需補(bǔ)強(qiáng)面積: A= 29..)1(2 mmfd ret ????? ??? 有效補(bǔ)強(qiáng)范圍: B=2d=756 40022 ???? ntndB ?? 取其中大者 其中 n? 為殼體開(kāi)孔處名義厚度, nt? 為接管名義厚度。 故 B=756 有效高度: 外側(cè): mmdh nt 7 81 ???? ? mmh 1501 ? (實(shí)際外伸高度 ) 故 1h = 內(nèi)側(cè): mmdh nt 7 82 ???? ? 2h =30(實(shí)際內(nèi)伸高度) 取其中小者 , 故 2h =30mm 有效補(bǔ)強(qiáng)面積: 多余金屬面積: 1A 筒體 mme 5?? ? ?? ? ? ?? ?21))((52))(378756(12mmfdBA reete??????????????? ????? 接管多余金屬面積: 2A 接管計(jì)算厚度: ? ? mmPdP cts ice ???? ???? ??? 22212)15()()(2)(2mmfChfhA retrtet??????????????? ??? 南華大學(xué)機(jī)械工程學(xué)院畢業(yè)設(shè)計(jì) 第 43 頁(yè) 共 62 頁(yè) 接管區(qū)焊縫面積: 3A ( 焊腳取 ) 23 12 4 4 1 62A m m? ? ? ? ? 有效補(bǔ)強(qiáng)面積: AmmAAAA e ???????? 4 7 5 9321 則開(kāi)孔后不需另行補(bǔ)強(qiáng)。 9 支座的選擇 選取支座形式為圈座。 DN=1400mm 支座結(jié)構(gòu)如下: 圖 裙座 筋板數(shù)量: 16,厚度 16mm; 基礎(chǔ)環(huán)板厚度: 22mm; 南華大學(xué)機(jī)械工程學(xué)院畢業(yè)設(shè)計(jì) 第 44 頁(yè) 共 62 頁(yè) 壓板厚度: 16mm。 10 氧化器的水壓試驗(yàn) 殼體分段進(jìn)行試壓,試驗(yàn)壓力均為 ,管程以 壓力試壓。 水壓試驗(yàn)時(shí)筒體的壁內(nèi)薄膜應(yīng)力: ? ?? ?? ? snniTT C CDP ??? ?? ?? ??? ? ?? ? ? ?? ?0 . 5 2 1 4 0 0 8 1 . 0 5 2 . 2 62 2 8 1 . 0T i nT nP D C M p aC???? ? ? ?? ? ? ?? ? ? ?? ? ??? M P as ?????? T? = 水壓試驗(yàn)時(shí)封頭的壁內(nèi)應(yīng)力: MP aC CKDP b niTTy )(2 )([)(2 )]([ ???? ?????? ??? ?? ?? M P as ???? sTy ?? ? 所以,水壓試驗(yàn)安全。 南華大學(xué)機(jī)械工程學(xué)院畢業(yè)設(shè)計(jì) 第 45 頁(yè) 共 62 頁(yè) 外文翻譯 THEORETICAL INVESTIGATION OF FLUID DISTRIBUTOR IN THE INLET/ OUTLET REGION OF SHELLSIDE OF SHELLANDTUBE HEAT EXCHANGER WITHLONGITUDINAL FLOW ZEN G WenLiang1, 2, HU Xianping1, DEN G Xianh1 (1. The Key Lab. of Enhanced Heat Transfer amp。 Energy Conservation of the Ministry of Education , South China University of Technology , Guangzhou 510640 ,China 。 2. The Chemistry and Materials Department ,Hengyang Normal University , Hengyang 421001 ,China) Abstract:Presents the theoretical investigation of fluid distributor in the region of inlet/ outlet of shellside of shellandtube heat exchanger with longitudinal flow in this paper . It is advanced the structural optimal mathematical model among the various structural parameters of shellside of heat exchanger. The model provides reference and direction not only for experimental and numerical investigation of this problem, but also for the other process with fluid distribution. Key words: shellandtube heat exchanger。 longitudinal flow 。 fluid distribution 。 structural optimization 。 theoretical model CLC Number : TQ051. 5 Document Code :A 0 Introduction Because of such advantages as lower pressure drop of shellside , larger logarithmic mean temperature difference (LMTD) , eliminating vibration of heattransfer tubes , and better overall heat transfer performance , shellandtube heat exchangers with axial flow have bee more popular in various are as of industrial process paring with shellandtube heat exchangers with segment baffles. With the scale of industrial production devices bee lager and larger , heat exchanger as a type of universal equipment in industrial process also need to satisfy the 南華大學(xué)機(jī)械工程學(xué)院畢業(yè)設(shè)計(jì) 第 46 頁(yè) 共 62 頁(yè) requirement of industrial process , and the heat transfer capability of heat exchanger became larger and larger . Because the length of tube of shellandtube heat exchanger is decided by processing technology condition, it is necessary to enlarge the diameter of shellside in order to enlarge the heat transfer capability. With the increasing of diameter of heat exchanger and decreasing of the ratio of length and diameter ( L/ D) , shellside fluid flow maldistribution became more badly and pressure drop of shellside increased more quickly , it is not only reduce the overall heat transfer performance of heat exchanger but also induce vibration of heattransfer tubes. These are proved by ZHOU Senquan[1 ], Chiou J . P[ 2 ] , Ulrich Mohr and Horst Gelbe[3 ] . In order to make fluid flow homodistribution, constructing a fluid flow distributor and setting it in the region of inlet or outlet of equipment have been carried out by S. S. Mousavi, K. Hooman[4 ] and L. Maharaj , J . Pocock , B. [ 5 ] . But there is no any report of fluid flow distributor about the shellside of shellandtube heat exchanger with axial flow, especially the largescale and superlarge scale heat exchanger . Setting fluid distributor also has advantage and disadvantage at the same time. On one hand shellside fluid flow maldistribution can be improved quickly, on the other hand pressure drop of shellside be increased quickly at same time. So it is very important to develop the theoretical, numerical, and experimental investigation of fluid flow distributor of shellandtube heat exchanger . The purpose of this research program is to optimize structural parameter of heat exchanger, to improve shellside fluid flow maldistribution, toreduce shellside pressure drop , and to enhance overall heat