freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高中數(shù)學(xué)教學(xué)反思(十五篇)-資料下載頁

2025-08-12 22:40本頁面
  

【正文】 算過程。教學(xué)中我充分借助學(xué)生已有的知識(shí)基礎(chǔ),通過觀察、實(shí)驗(yàn)、操作、推理等活動(dòng),通過例題的直觀操作,通過知識(shí)的遷移幫助學(xué)生理解了分?jǐn)?shù)乘分?jǐn)?shù)的意義,初步掌握了分?jǐn)?shù)乘分?jǐn)?shù)的計(jì)算方法。在探究活動(dòng)中,能引導(dǎo)學(xué)生主動(dòng)參與分析、觀察、猜想、驗(yàn)證、比較、歸納的過程,進(jìn)一步發(fā)展了學(xué)生初步的演繹推理和合情推理能力。通過本課教學(xué)我有了以下幾點(diǎn)思考:以形論數(shù)”和“以數(shù)表形”相結(jié)合。分?jǐn)?shù)乘法的意義和計(jì)算法則的道理比較抽象,學(xué)生理解起來不是很容易,所以利用圖形使抽象的問題直觀化,數(shù)形結(jié)合思想的滲透也有著不同的層次,例如分?jǐn)?shù)乘法前兩節(jié)課中是利用具體的實(shí)物圖形,幫助學(xué)生從具體問題中抽象出數(shù)學(xué)問題。在分?jǐn)?shù)乘法第三節(jié)課中是利用直觀的幾何圖形,幫助學(xué)生理解分?jǐn)?shù)乘分?jǐn)?shù)的計(jì)算道理。接下來的分?jǐn)?shù)乘法應(yīng)用中,我們還將利用線段圖幫助學(xué)生理解分?jǐn)?shù)乘法應(yīng)用的問題。數(shù)形結(jié)合的過程不是簡(jiǎn)單的抽象變?yōu)橹庇^的過程,而是抽象變?yōu)橹庇^之后,再從直觀變?yōu)槌橄?,也就是要講“以形論數(shù)”和“以數(shù)表形”兩個(gè)方面有機(jī)的結(jié)合起來,只有完整的使學(xué)生經(jīng)歷數(shù)與形之間的“互動(dòng)”,才能使他們感知“數(shù)形結(jié)合”,才能使他們能在解決問題時(shí)自覺地應(yīng)用“數(shù)形結(jié)合”經(jīng)歷探究過程,優(yōu)化互動(dòng)生成?!靶抡n程標(biāo)準(zhǔn)”指出:“數(shù)學(xué)教學(xué)是數(shù)學(xué)活動(dòng)的教學(xué),是師生之間、學(xué)生之間交往互動(dòng)與共同發(fā)展的過程?!边@一新的理念說明:數(shù)學(xué)教學(xué)活動(dòng)將是學(xué)生經(jīng)歷一個(gè)數(shù)學(xué)化的過程,是學(xué)生自己建構(gòu)數(shù)學(xué)知識(shí)的活動(dòng)。因此,教學(xué)本課時(shí)力圖讓學(xué)生親自經(jīng)歷學(xué)習(xí)過程。即讓學(xué)生在動(dòng)手操作——探究算法——舉例驗(yàn)證——交流評(píng)價(jià)——法則統(tǒng)整等一系列活動(dòng)中經(jīng)歷“分?jǐn)?shù)乘分?jǐn)?shù)”計(jì)算法則的形成過程。這里關(guān)注了讓學(xué)生自己去經(jīng)歷、去體驗(yàn),去感悟、去創(chuàng)造。學(xué)習(xí)是孩子自己的事,把探究的權(quán)力真正還給學(xué)生后,學(xué)生的表現(xiàn)會(huì)讓你大吃一驚。在兩個(gè)班的上課中,關(guān)于分?jǐn)?shù)乘分?jǐn)?shù)法則都有不同的驗(yàn)證和說明的方法出現(xiàn),這些方法遠(yuǎn)遠(yuǎn)超出課前的預(yù)設(shè)。究其原因,就是學(xué)習(xí)變成了自己的事,學(xué)的更主動(dòng),潛能發(fā)揮到了極至。高中數(shù)學(xué) 教學(xué)反思篇十四我們常有這樣的困惑:不僅是講了,而且是講了多遍,可是學(xué)生的解題能力就是得不到提高!也常聽見學(xué)生這樣的埋怨:鞏固題做了千萬遍,數(shù)學(xué)成績(jī)卻遲遲得不到提高!這應(yīng)該引起我們的反思了。誠(chéng)然,出現(xiàn)上述情況涉及方方面面,但其中的例題教學(xué)值得反思,數(shù)學(xué)的例題是知識(shí)由產(chǎn)生到應(yīng)用的關(guān)鍵一步,即所謂“拋磚引玉”,然而很多時(shí)候只是例題繼例題,解后并沒有引導(dǎo)學(xué)生進(jìn)行反思,因而學(xué)生的學(xué)習(xí)也就停留在例題表層,出現(xiàn)上述情況也就不奇怪了??鬃釉疲簩W(xué)而不思則罔?!柏琛奔疵曰蠖鴽]有所得,把其意思引申一下,我們也就不難理解例題教學(xué)為什么要進(jìn)行解后反思了。事實(shí)上,解后反思是一個(gè)知識(shí)小結(jié)、方法提煉的過程。是一個(gè)吸取教訓(xùn)、逐步提高的過程。是一個(gè)收獲希望的過程。從這個(gè)角度上講,例題教學(xué)的解后反思應(yīng)該成為例題教學(xué)的一個(gè)重要內(nèi)容。本文擬從以下三個(gè)方面作些探究。一、在解題的方法規(guī)律處反思“例題千萬道,解后拋九霄”難以達(dá)到提高解題能力、發(fā)展思維的目的。善于作解題后的反思、方法的歸類、規(guī)律的小結(jié)和技巧的揣摩,再進(jìn)一步作一題多變,一題多問,一題多解,挖掘例題的深度和廣度,擴(kuò)大例題的輻射面,無疑對(duì)能力的提高和思維的發(fā)展是大有裨益的。例如:(原例題)已知等腰三角形的腰長(zhǎng)是4,底長(zhǎng)為6。求周長(zhǎng)。我們可以將此例題進(jìn)行一題多變。變式1 已知等腰三角形一腰長(zhǎng)為4,周長(zhǎng)為14,求底邊長(zhǎng)。(這是考查逆向思維能力)變式2 已等腰三角形一邊長(zhǎng)為4。另一邊長(zhǎng)為6,求周長(zhǎng)。(前兩題相比,需要改變思維策略,進(jìn)行分類討論)變式3已知等腰三角形的一邊長(zhǎng)為3,另一邊長(zhǎng)為6,求周長(zhǎng)。(顯然“3只能為底”否則與三角形兩邊之和大于第三邊相矛盾,這有利于培養(yǎng)學(xué)生思維嚴(yán)密性)變式4 已知等腰三角形的腰長(zhǎng)為x,求底邊長(zhǎng)y的取值范圍。變式5 已知等腰三角形的腰長(zhǎng)為x,底邊長(zhǎng)為y,周長(zhǎng)是14。請(qǐng)先寫出二者的函數(shù)關(guān)系式,再在平面直角坐標(biāo)內(nèi)畫出二者的圖象。(與前面相比,要求又提高了,特別是對(duì)條件0﹤y﹤2x的理解運(yùn)用,是完成此問的關(guān)鍵)再比如:人教版初三幾何中第93頁例2和第107頁例1分別用不同的方法解答,這是一題多解不可多得的素材(ab為⊙o的直徑,c為⊙o上的一點(diǎn),ad和過c點(diǎn)的切線互相垂直,垂足為d。求證:ac平分∠dab)通過例題的層層變式,學(xué)生對(duì)三邊關(guān)系定理的認(rèn)識(shí)又深了一步,有利于培養(yǎng)學(xué)生從特殊到一般,從具體到抽象地分析問題、解決問題。通過例題解法多變的教學(xué)則有利于幫助學(xué)生形成思維定勢(shì),而又打破思維定勢(shì)。有利于培養(yǎng)思維的變通性和靈活性。二,在學(xué)生易錯(cuò)處反思學(xué)生的知識(shí)背景、思維方式、情感體驗(yàn)往往和成人不同,而其表達(dá)方式可能又不準(zhǔn)確,這就難免有“錯(cuò)”。例題教學(xué)若能從此切入,進(jìn)行解后反思,則往往能找到“病根”,進(jìn)而對(duì)癥下藥,常能收到事半功倍的效果!有這樣一個(gè)曾刊載于《中小學(xué)數(shù)學(xué)》初中(教師)版20__年第5期的案例:一位初一的老師在講完負(fù)負(fù)得正的規(guī)則后,出了這樣一道題:—3(—4)= ?, a學(xué)生的答案是“9”,老師一看:錯(cuò)了!于是馬上請(qǐng)b同學(xué)回答,這位同學(xué)的答案是“12”,老師便請(qǐng)他講一講算法:……,下課后聽課的老師對(duì)給出錯(cuò)誤的答案的學(xué)生進(jìn)行訪談,那位學(xué)生說:站在—3這個(gè)點(diǎn)上,因?yàn)槌艘浴?,所以要沿著數(shù)軸向相反方向移動(dòng)四次,每次移三格,故答案為9。他的答案的確錯(cuò)了,怎么錯(cuò)的?為什么會(huì)有這樣的想法?又怎樣糾正呢?如果我們的例題教學(xué)能抓住這一契機(jī),并就此展開討論、反思,無疑比講十道、百道乃至更多的例題來鞏固法則要好得多,而這一點(diǎn)恰恰容易被我們所忽視。計(jì)算是初一代數(shù)的教學(xué)重點(diǎn)也是難點(diǎn),如何把握這一重點(diǎn),突破這一難點(diǎn)?各老師在例題教學(xué)方面可謂“千方百計(jì)”。例如在上完有關(guān)冪的性質(zhì),而進(jìn)入下一階段——單項(xiàng)式、多項(xiàng)式的乘除法時(shí),筆者就設(shè)計(jì)了如下的兩個(gè)例題:(1)請(qǐng)分別指出(—2)2,—22,—22,22的意義。(2)請(qǐng)辨析下列各式:① a2+a2=a4 ②a4247。a2=a4247。2=a2③a3 (a)2 =(a)3+2 =a5④(a)0 247。a3=0 ⑤(a2)3a=a2+3+1=a2解后筆者便引導(dǎo)學(xué)生進(jìn)行反思小結(jié).(1)計(jì)算常出現(xiàn)哪些方面的錯(cuò)誤? (2)出現(xiàn)這些錯(cuò)誤的原因有哪些? (3)怎樣克服這些錯(cuò)誤呢? 同學(xué)們各抒己見,針對(duì)各種“病因”開出了有效的“方子”。實(shí)踐證明,這樣的例題教學(xué)是成功的,學(xué)生在計(jì)算的準(zhǔn)確率、計(jì)算的速度兩個(gè)方面都有極大的提高。三、在情感體驗(yàn)處反思因?yàn)檎麄€(gè)的解題過程并非僅僅只是一個(gè)知識(shí)運(yùn)用、技能訓(xùn)練的過程,而是一個(gè)伴隨著交往、創(chuàng)造、追求和喜、怒、哀、樂的綜合過程,是學(xué)生整個(gè)內(nèi)心世界的參與。其間他既品嘗了失敗的苦澀,又收獲了“山重水復(fù)疑無路,柳暗花明又一村”的喜悅,他可能是獨(dú)立思考所得,也有可能是通過合作協(xié)同解決,既體現(xiàn)了個(gè)人努力的價(jià)值,又無不折射出集體智慧的光芒。在此處引導(dǎo)學(xué)生進(jìn)行解后反思,有利于培養(yǎng)學(xué)生積極的情感體驗(yàn)和學(xué)習(xí)動(dòng)機(jī)。有利于激勵(lì)學(xué)生的學(xué)習(xí)興趣,點(diǎn)燃學(xué)習(xí)的熱情,變被動(dòng)學(xué)習(xí)為自主探究學(xué)習(xí)。還有利于鍛煉學(xué)生的學(xué)習(xí)毅力和意志品格。同時(shí),在此過程中,學(xué)生獨(dú)立思考的學(xué)習(xí)習(xí)慣、合作意識(shí)和團(tuán)隊(duì)精神均能得到很好的培養(yǎng)。數(shù)學(xué)教育家弗賴登塔爾就指出:反思是數(shù)學(xué)活動(dòng)的核心和動(dòng)力??傊夂蟮姆此挤椒?、規(guī)律得到了及時(shí)的小結(jié)歸納。解后的反思使我們撥開迷蒙,看清“廬山真面目”而逐漸成熟起來。在反思中學(xué)會(huì)了獨(dú)立思考,在反思中學(xué)會(huì)了傾聽,學(xué)會(huì)了交流、合作,學(xué)會(huì)了分享,體驗(yàn)了學(xué)習(xí)的樂趣,交往的快慰。高中數(shù)學(xué) 教學(xué)反思篇十五“倒數(shù)的認(rèn)識(shí)”是一節(jié)概念教學(xué)課,這部分內(nèi)容是在學(xué)習(xí)了分?jǐn)?shù)乘法的基礎(chǔ)上進(jìn)行教學(xué)的。理解倒數(shù)的意義,會(huì)求一個(gè)數(shù)的倒數(shù)是學(xué)生學(xué)習(xí)分?jǐn)?shù)除法的前提。學(xué)生只有學(xué)好這部分知識(shí),才能更好地掌握后面的分?jǐn)?shù)除法的計(jì)算和應(yīng)用題。一、課前的思考與預(yù)設(shè)針對(duì)本課內(nèi)容,看似簡(jiǎn)單,實(shí)質(zhì)內(nèi)涵非常豐富的特點(diǎn),結(jié)合本班學(xué)生大多數(shù)基礎(chǔ)薄弱的現(xiàn)狀。認(rèn)真思考了本節(jié)課中教學(xué)目標(biāo)和重、難點(diǎn)。力爭(zhēng)能讓學(xué)生聽的清楚,練的活潑,學(xué)的輕松。所以課前思考時(shí)從以下幾個(gè)方面入手。本課的知識(shí)點(diǎn)本課的學(xué)習(xí)內(nèi)容是“倒數(shù)的認(rèn)識(shí)”即對(duì)倒數(shù)的認(rèn)知與識(shí)別。如何能夠讓學(xué)生很清晰的明白倒數(shù)的意義呢?以及如何找準(zhǔn)一個(gè)數(shù)的倒數(shù)呢?本課的關(guān)鍵點(diǎn)《小學(xué)數(shù)學(xué)新課程標(biāo)準(zhǔn)》中指出既要關(guān)注學(xué)生的學(xué)習(xí)結(jié)果,又要關(guān)注學(xué)生的學(xué)習(xí)過程。對(duì)倒數(shù)的意義教學(xué),進(jìn)行了仔細(xì)的剖析,把意義分為幾個(gè)部分:“乘積是1”,“兩個(gè)數(shù)”,“互為倒數(shù)”這三個(gè)部分,看起來簡(jiǎn)單,但是每個(gè)部分再仔細(xì)推敲,就發(fā)現(xiàn)“怎么才能得到1。幾個(gè)數(shù),是幾個(gè)什么樣的數(shù)。“互為”如何理解呢?,在生活中有類似的思路可以遷移的事物嗎?這些方面對(duì)學(xué)生清楚理解倒數(shù)的意義非常重要。本課的著力點(diǎn)基于對(duì)關(guān)鍵點(diǎn)的認(rèn)真思考,發(fā)現(xiàn)“互為”一詞比另兩個(gè)關(guān)鍵點(diǎn)更難理解,難說的清楚。因此,必須在這個(gè)方面需要花功夫,下力氣,因?yàn)槔斫膺@一關(guān)鍵點(diǎn)是學(xué)生掌握倒數(shù)意義的標(biāo)志,也是幫助學(xué)生能識(shí)別“倒數(shù)”這一概念的方法之一。本課的深化點(diǎn)(預(yù)設(shè))基于對(duì)倒數(shù)的意義的思考,發(fā)現(xiàn)定義中的“兩個(gè)數(shù)”這一關(guān)鍵點(diǎn)的外延非常豐富,兩個(gè)怎樣的數(shù)呢?能不能 都是整數(shù)?能不能都是分?jǐn)?shù)?能不能都是小數(shù)?……有沒有特殊的數(shù)呢?比如整數(shù)都有倒數(shù)嗎?小數(shù)都有倒數(shù)嗎?分?jǐn)?shù)都有倒數(shù)嗎?因?yàn)檎麛?shù)中有0、1這樣特殊的數(shù),還有負(fù)整數(shù)。小數(shù)中有有限小數(shù)、無限小數(shù)、無限不循環(huán)小數(shù)。它們有沒有倒數(shù)這樣的情況課堂中學(xué)生會(huì)出現(xiàn)這些疑問嗎?出現(xiàn)了如何處理呢。如果不出現(xiàn)又如何處理呢。二、課堂的實(shí)施與體會(huì)創(chuàng)設(shè)情景導(dǎo)入新課在課的導(dǎo)入部分,由一些有趣的文字引出本節(jié)課所要探究的問題倒數(shù),從形象直觀上感受顛倒位置,既激發(fā)了學(xué)生的探究興趣,為學(xué)生學(xué)習(xí)新知識(shí)做了充分的準(zhǔn)備,為學(xué)生較好理解倒數(shù)的意義做了鋪墊。合作探究學(xué)習(xí)變例題教學(xué)為學(xué)生自學(xué)課本,找到倒數(shù)的意義,并與學(xué)生一起剖析,發(fā)現(xiàn)求一個(gè)數(shù)的倒數(shù)的方法,然后通過舉例,檢查學(xué)生的掌握情況,小組合作討論:0和1的倒數(shù)問題,再總結(jié)出求一個(gè)數(shù)的倒數(shù)的方法。練習(xí)形式多樣充分利用教材的練習(xí)同時(shí),我還適當(dāng)?shù)匮a(bǔ)充了練習(xí)的內(nèi)容,使學(xué)生在練習(xí)中鞏固,在練習(xí)中提高。比如設(shè)計(jì)的“每人出題同桌互說”,讓學(xué)生不僅在課堂上學(xué),也在課堂上用,做到真正掌握。三、課后思考與感悟通過教學(xué),我感受到教師在教學(xué)中應(yīng)相信學(xué)生的能力,并積極成為學(xué)生學(xué)習(xí)的合作者、幫助者和促進(jìn)者,教學(xué)中處理好扶與放的關(guān)系。給學(xué)生獨(dú)立思考的時(shí)間。相信學(xué)生能具有獨(dú)立思考的能力,教學(xué)中每一個(gè)問題的提出,要使學(xué)生不是坐等聽別人講,而是能養(yǎng)成先自己積極思考的習(xí)慣。 給學(xué)生合作學(xué)習(xí)的機(jī)會(huì)。當(dāng)學(xué)生有困惑時(shí),教師可以充分發(fā)揮學(xué)生集體智慧,引導(dǎo)學(xué)生小組合作、互相學(xué)習(xí)、互相交流,在合作中交流、在合作中提高、在合作中解決困惑。在教學(xué)中,我對(duì)于探求“0和1有沒有倒數(shù)”環(huán)節(jié),充分發(fā)揮合作交流的作用,群策群力解決問題。為深入淺出的理解“互為”,我舉例“互為同桌”,“互為朋友”,讓學(xué)生覺得“互為”就在身邊,對(duì)于理解關(guān)鍵點(diǎn),就能引起共鳴。在練習(xí)中,緊緊圍繞關(guān)鍵點(diǎn)設(shè)計(jì)了三條判斷練習(xí),讓學(xué)生在練習(xí)中明白成為倒數(shù)的條件,缺一不可。存在的困惑與不足通過本節(jié)課的教學(xué),我發(fā)現(xiàn):大部分學(xué)生能夠理解倒數(shù)的意義,掌握求一個(gè)數(shù)的倒數(shù)的方法,但有少數(shù)學(xué)生對(duì)于倒數(shù)的認(rèn)識(shí),僅僅是停留在是不是分子、分母顛倒這一表面形式上,忽略了兩個(gè)數(shù)的乘積為1這一本質(zhì)條件,于是他們錯(cuò)誤的認(rèn)為小數(shù)和帶分?jǐn)?shù)是沒有倒數(shù)的。后來,雖然大部分學(xué)生通過簡(jiǎn)單的交流討論,明白了小數(shù)和帶分?jǐn)?shù)也是有倒數(shù)的,, 1 的倒數(shù)是1 錯(cuò)誤的情況。面對(duì)這樣的情況,我感覺有些困惑,為什么教材僅在整數(shù)和真、假分?jǐn)?shù)范圍內(nèi)教學(xué)倒數(shù)呢?后面分?jǐn)?shù)除法的計(jì)算方面也涉及到小數(shù)和帶分?jǐn)?shù)的倒數(shù)問題,我們?cè)趯?shí)際教學(xué)中是否需要補(bǔ)上相關(guān)的內(nèi)容呢?
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1