freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

呂梁市初中數(shù)學(xué)試卷分類匯編易錯易錯壓軸勾股定理選擇題(含答案)(2)-資料下載頁

2025-04-01 23:47本頁面
  

【正文】 =?(舍),m2=,∴B(,),∴BD=2BF=2=6,則對角線BD的最小值是6;故選:D.【點睛】本題考查了平行四邊形的性質(zhì),利用待定系數(shù)法求一次函數(shù)的解析式,三角形相似的判定,圓形與坐標(biāo)特點,.21.A解析:A【分析】首先根據(jù)勾股定理得出圓弧的半徑,然后得出點A的坐標(biāo).【詳解】解: ∴由圖可知:點A所表示的數(shù)為: 故選:A【點睛】本題主要考查的就是數(shù)軸上點所表示的數(shù),.22.C解析:C【分析】矩形與菱形相比,菱形的四條邊相等、對角線互相垂直;矩形四個角是直角,對角線相等,由此結(jié)合選項即可得出答案.【詳解】A、菱形、矩形的內(nèi)角和都為360176。,故本選項錯誤;B、對角互相平分,菱形、矩形都具有,故本選項錯誤;C、對角線相等菱形不具有,而矩形具有,故本選項正確D、對角線互相垂直,菱形具有而矩形不具有,故本選項錯誤,故選C.【點睛】本題考查了菱形的性質(zhì)及矩形的性質(zhì),熟練掌握矩形的性質(zhì)與菱形的性質(zhì)是解題的關(guān)鍵.23.B解析:B【分析】根據(jù)翻折的性質(zhì)可知:AC=AE=6,CD=DE,設(shè)CD=DE=x,在Rt△DEB中利用勾股定理解決.【詳解】解:在Rt△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB?AE=10?6=4,設(shè)CD=DE=x,在Rt△DEB中,∵,∴,∴x=3,∴CD=3.故答案為:B.【點睛】本題考查翻折的性質(zhì)、勾股定理,利用翻折不變性是解決問題的關(guān)鍵,學(xué)會轉(zhuǎn)化的思想去思考問題.24.B解析:B【分析】作AD⊥BC,則D為BC的中點,即BD=DC=2,根據(jù)勾股定理可以求得AD,則根據(jù)S=BCAD可以求得△ABC的面積.【詳解】解:作AD⊥BC,則D為BC的中點,則BD=DC=2,∵AB=,且AD==4,∴△ABC的面積為S=BCAD=44=8,故選:B.【點睛】本題考查了勾股定理的運用,三角形面積的計算,本題中正確的運用勾股定理求AD是解題的關(guān)鍵.25.A解析:A【解析】A.12+22≠()2,不能構(gòu)成直角三角形,故此選項符合題意;B.32+42=52,能構(gòu)成直角三角形,故此選項不符合題意;C.52+122=132,能構(gòu)成直角三角形,故此選項不符合題意;D.32+22=()2,能構(gòu)成直角三角形,故此選項不符合題意;故選A.26.D解析:D【解析】根據(jù)題意可畫圖為:過點A作AD⊥BC,垂足為D,∵∠B=60176。,∴∠BAD=30176。,∵AB=2,∴AD= ,∴S△ABC= BCAD=2=.故選D.27.C解析:C【分析】由AP+CP=AC得到=BP+AC,即計算當(dāng)BP最小時即可,此時BP⊥AC,根據(jù)三角形面積公式求出BP即可得到答案.【詳解】∵AP+CP=AC,∴=BP+AC,∴BP⊥AC時,有最小值,設(shè)AH⊥BC,∵∴BH=3,∴,∵,∴,∴BP=,∴=AC+BP=5+=,故選:C.【點睛】此題考查等腰三角形的三線合一的性質(zhì),勾股定理,最短路徑問題,正確理解時點P的位置是解題的關(guān)鍵.28.C解析:C【分析】根據(jù)圖形翻折變換的性質(zhì)可知,AE=BE,設(shè)AE=x,則BE=x,CE=8x,再在Rt△BCE中利用勾股定理即可求出BE的長度.【詳解】解:∵△ADE翻折后與△BDE完全重合,∴AE=BE,設(shè)AE=x,則BE=x,CE=8﹣x,在Rt△BCE中,BE2=BC2+CE2,即x2=62+(8﹣x)2,解得,x=,∴BE=.故選:C.【點睛】本題考查了圖形的翻折變換,解題過程中應(yīng)注意折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變.29.B解析:B【分析】設(shè)斜邊為c,根據(jù)勾股定理得出c=,再由三角形的面積公式即可得出結(jié)論.【詳解】解:設(shè)斜邊為c,根據(jù)勾股定理得出c=,∵ab=ch,∴ab=?h,即a2b2=a2h2+b2h2,∴=+,即+=.故選:B.【點睛】本題考查勾股定理,熟知在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解題關(guān)鍵.30.A解析:A【分析】先計算AB2=2890000,BC2=640000,AC2=2250000,可得BC2+AC2=AB2,那么△ABC是直角三角形,而直角三角形斜邊上的中線等于斜邊的一半,從而可確定P點的位置.【詳解】解:如圖∵AB2=2890000,BC2=640000,AC2=2250000∴BC2+AC2=AB2,∴△ABC是直角三角形,∴活動中心P應(yīng)在斜邊AB的中點.故選:A.【點睛】本題考查了勾股定理的逆定理.解題的關(guān)鍵是證明△ABC是直角三角形.
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1