freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

中考數(shù)學(xué)知識點過關(guān)培優(yōu)易錯試卷訓(xùn)練∶二次函數(shù)含答案-資料下載頁

2025-03-31 07:32本頁面
  

【正文】 ,﹣).點睛:本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點的坐標(biāo)特征、二次函數(shù)的性質(zhì)、等腰直角的判定與性質(zhì)和平行四邊形的性質(zhì);會利用待定系數(shù)法求函數(shù)解析式;理解坐標(biāo)與圖形性質(zhì);會運用分類討論的思想解決數(shù)學(xué)問題.13.復(fù)習(xí)課中,教師給出關(guān)于x的函數(shù)(k是實數(shù)).教師:請獨立思考,并把探索發(fā)現(xiàn)的與該函數(shù)有關(guān)的結(jié)論(性質(zhì))寫到黑板上.學(xué)生思考后,又補充一些結(jié)論,并從中選擇如下四條:①存在函數(shù),其圖像經(jīng)過(1,0)點;②函數(shù)圖像與坐標(biāo)軸總有三個不同的交點;③當(dāng)時,不是y隨x的增大而增大就是y隨x的增大而減小;④若函數(shù)有最大值,則最大值必為正數(shù),若函數(shù)有最小值,則最小值必為負(fù)數(shù);教師:請你分別判斷四條結(jié)論的真假,并給出理由,最后簡單寫出解決問題時所用的數(shù)學(xué)方法.【答案】①真,②假,③假,④真,理由和所用的數(shù)學(xué)方法見解析.【解析】試題分析:根據(jù)方程思想,特殊與一般思想,反證思想,分類思想對各結(jié)論進行判斷.試題解析:①真,②假,③假,④:①將(1,0)代入,得,解得.∴存在函數(shù),其圖像經(jīng)過(1,0)點.∴結(jié)論①為真.②舉反例如,當(dāng)時,函數(shù)的圖象與坐標(biāo)軸只有兩個不同的交點.∴結(jié)論②為假.③∵當(dāng)時,二次函數(shù)(k是實數(shù))的對稱軸為,∴可舉反例如,當(dāng)時,二次函數(shù)為,當(dāng)時,y隨x的增大而減??;當(dāng)時,y隨x的增大而增大.∴結(jié)論③為假.④∵當(dāng)時,二次函數(shù)的最值為,∴當(dāng)時,有最小值,最小值為負(fù);當(dāng)時,有最大值,最大值為正.∴結(jié)論④為真.解決問題時所用的數(shù)學(xué)方法有方程思想,特殊與一般思想,反證思想,分類思想考點:;;、特殊元素法、反證思想和分類思想的應(yīng)用.14.如圖,矩形OABC的兩邊在坐標(biāo)軸上,點A的坐標(biāo)為(10,0),拋物線y=ax2+bx+4過點B,C兩點,且與x軸的一個交點為D(﹣2,0),點P是線段CB上的動點,設(shè)CP=t(0<t<10).(1)請直接寫出B、C兩點的坐標(biāo)及拋物線的解析式;(2)過點P作PE⊥BC,交拋物線于點E,連接BE,當(dāng)t為何值時,∠PBE=∠OCD?(3)點Q是x軸上的動點,過點P作PM∥BQ,交CQ于點M,作PN∥CQ,交BQ于點N,當(dāng)四邊形PMQN為正方形時,請求出t的值.【答案】(1)B(10,4),C(0,4),;(2)3;(3)或 .【解析】試題分析:(1)由拋物線的解析式可求得C點坐標(biāo),由矩形的性質(zhì)可求得B點坐標(biāo),由B、D的坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(2)可設(shè)P(t,4),則可表示出E點坐標(biāo),從而可表示出PB、PE的長,由條件可證得△PBE∽△OCD,利用相似三角形的性質(zhì)可得到關(guān)于t的方程,可求得t的值;(3)當(dāng)四邊形PMQN為正方形時,則可證得△COQ∽△QAB,利用相似三角形的性質(zhì)可求得CQ的長,在Rt△BCQ中可求得BQ、CQ,則可用t分別表示出PM和PN,可得到關(guān)于t的方程,可求得t的值.試題解析:解:(1)在y=ax2+bx+4中,令x=0可得y=4,∴C(0,4),∵四邊形OABC為矩形,且A(10,0),∴B(10,4),把B、D坐標(biāo)代入拋物線解析式可得,解得,∴拋物線解析式為y=x2+x+4;(2)由題意可設(shè)P(t,4),則E(t,t2+t+4),∴PB=10﹣t,PE=t2+t+4﹣4=t2+t,∵∠BPE=∠COD=90176。,當(dāng)∠PBE=∠OCD時,則△PBE∽△OCD,∴,即BP?OD=CO?PE,∴2(10﹣t)=4(t2+t),解得t=3或t=10(不合題意,舍去),∴當(dāng)t=3時,∠PBE=∠OCD; 當(dāng)∠PBE=∠CDO時,則△PBE∽△ODC,∴,即BP?OC=DO?PE,∴4(10﹣t)=2(t2+t),解得t=12或t=10(均不合題意,舍去)綜上所述∴當(dāng)t=3時,∠PBE=∠OCD;(3)當(dāng)四邊形PMQN為正方形時,則∠PMC=∠PNB=∠CQB=90176。,PM=PN,∴∠CQO+∠AQB=90176。,∵∠CQO+∠OCQ=90176。,∴∠OCQ=∠AQB,∴Rt△COQ∽Rt△QAB,∴,即OQ?AQ=CO?AB,設(shè)OQ=m,則AQ=10﹣m,∴m(10﹣m)=44,解得m=2或m=8,①當(dāng)m=2時,CQ==,BQ==,∴sin∠BCQ==,sin∠CBQ==,∴PM=PC?sin∠PCQ=t,PN=PB?sin∠CBQ=(10﹣t),∴t =(10﹣t),解得t=,②當(dāng)m=8時,同理可求得t=,∴當(dāng)四邊形PMQN為正方形時,t的值為或.點睛:本題為二次函數(shù)的綜合應(yīng)用,涉及矩形的性質(zhì)、待定系數(shù)法、相似三角形的判定和性質(zhì)、勾股定理、解直角三角形、方程思想等知識.在(1)中注意利用矩形的性質(zhì)求得B點坐標(biāo)是解題的關(guān)鍵,在(2)中證得△PBE∽△OCD是解題的關(guān)鍵,在(3)中利用Rt△COQ∽Rt△QAB求得CQ的長是解題的關(guān)鍵.本題考查知識點較多,綜合性較強,難度較大.15.已知拋物線的圖象如圖所示:(1)將該拋物線向上平移2個單位,分別交x軸于A、B兩點,交y軸于點C,則平移后的解析式為  .(2)判斷△ABC的形狀,并說明理由.(3)在拋物線對稱軸上是否存在一點P,使得以A、C、P為頂點的三角形是等腰三角形?若存在,求出點P的坐標(biāo);若不存在,說明理由.【答案】(1);(2)△ABC是直角三角形;(3)存在,、.【解析】【分析】(1)根據(jù)函數(shù)圖象的平移規(guī)律,可得新的函數(shù)解析式;(2)根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得A,B,C的坐標(biāo),根據(jù)勾股定理及逆定理,可得答案;(3)根據(jù)等腰三角形的定義,分三種情況,可得關(guān)于n的方程,根據(jù)解方程,可得答案.【詳解】(1)將該拋物線向上平移2個單位,得:yx2x+2.故答案為yx2x+2;(2)當(dāng)y=0時,x2x+2=0,解得:x1=﹣4,x2=1,即B(﹣4,0),A(1,0).當(dāng)x=0時,y=2,即C(0,2).AB=1﹣(﹣4)=5,AB2=25,AC2=(1﹣0)2+(0﹣2)2=5,BC2=(﹣4﹣0)2+(0﹣2)2=20.∵AC2+BC2=AB2,∴△ABC是直角三角形;(3)yx2x+2的對稱軸是x,設(shè)P(,n),AP2=(1)2+n2n2,CP2(2﹣n)2,AC2=12+22=:①當(dāng)AP=AC時,AP2=AC2,n2=5,方程無解;②當(dāng)AP=CP時,AP2=CP2,n2(2﹣n)2,解得:n=0,即P1(,0);③當(dāng)AC=CP時,AC2=CP2,(2﹣n)2=5,解得:n1=2,n2=2,P2(,2),P3(,2).綜上所述:在拋物線對稱軸上存在一點P,使得以A、C、P為頂點的三角形是等腰三角形,點P的坐標(biāo)(,0),(,2),(,2).【點睛】本題考查了二次函數(shù)綜合題.解(1)的關(guān)鍵是二次函數(shù)圖象的平移,解(2)的關(guān)鍵是利用勾股定理及逆定理;解(3)的關(guān)鍵是利用等腰三角形的定義得出關(guān)于n的方程,要分類討論,以防遺漏.
點擊復(fù)制文檔內(nèi)容
研究報告相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1