freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx全國各地中考模擬試卷數(shù)學分類:二次函數(shù)綜合題匯編含答案解析-資料下載頁

2025-03-30 22:22本頁面
  

【正文】 (2)令,解得或,∴點A(﹣3,0),B(1,0),作PD⊥x軸于點D,∵點P在上,∴設(shè)點P(x,),①∵PA⊥NA,且PA=NA,∴△PAD≌△AND,∴OA=PD,即,解得x=(舍去)或x=,∴點P(,2);②設(shè)P(x,y),則,∵=OB?OC+AD?PD+(PD+OC)?OD=====,∴當x=時,=,當x=時,=,此時P(,).考點:1.二次函數(shù)綜合題;2.二次函數(shù)的最值;3.最值問題;4.壓軸題.13.如圖,在平面直角坐標系中,已知拋物線y=x2+x﹣2與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,直線l經(jīng)過A,C兩點,連接BC.(1)求直線l的解析式;(2)若直線x=m(m<0)與該拋物線在第三象限內(nèi)交于點E,與直線l交于點D,連接OD.當OD⊥AC時,求線段DE的長;(3)取點G(0,﹣1),連接AG,在第一象限內(nèi)的拋物線上,是否存在點P,使∠BAP=∠BCO﹣∠BAG?若存在,求出點P的坐標;若不存在,請說明理由.【答案】(1)y=;(2)DE=;(3)存在點P(,),使∠BAP=∠BCO﹣∠BAG,理由見解析.【解析】【分析】(1)根據(jù)題目中的函數(shù)解析式可以求得點A和點C的坐標,從而可以求得直線l的函數(shù)解析式;(2)根據(jù)題意作出合適的輔助線,利用三角形相似和勾股定理可以解答本題;(3)根據(jù)題意畫出相應的圖形,然后根據(jù)銳角三角函數(shù)可以求得∠OAC=∠OCB,然后根據(jù)題目中的條件和圖形,利用銳角三角函數(shù)和勾股定理即可解答本題.【詳解】(1)∵拋物線y=x2+x2,∴當y=0時,得x1=1,x2=4,當x=0時,y=2,∵拋物線y=x2+x2與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,∴點A的坐標為(4,0),點B(1,0),點C(0,2),∵直線l經(jīng)過A,C兩點,設(shè)直線l的函數(shù)解析式為y=kx+b,得,即直線l的函數(shù)解析式為y=?x?2; (2)直線ED與x軸交于點F,如圖1所示,由(1)可得,AO=4,OC=2,∠AOC=90176。,∴AC=2,∴OD=,∵OD⊥AC,OA⊥OC,∠OAD=∠CAO,∴△AOD∽△ACO,∴,即,得AD=,∵EF⊥x軸,∠ADC=90176。,∴EF∥OC,∴△ADF∽△ACO,∴,解得,AF=,DF=,∴OF=4=,∴m=,當m=時,y=(?)2+()2=,∴EF=,∴DE=EFFD=?=;(3)存在點P,使∠BAP=∠BCO∠BAG, 理由:作GM⊥AC于點M,作PN⊥x軸于點N,如圖2所示,∵點A(4,0),點B(1,0),點C(0,2),∴OA=4,OB=1,OC=2,∴tan∠OAC=,tan∠OCB=,AC=2,∴∠OAC=∠OCB,∵∠BAP=∠BCO∠BAG,∠GAM=∠OAC∠BAG,∴∠BAP=∠GAM,∵點G(0,1),AC=2,OA=4,∴OG=1,GC=1,∴AG=,即,解得,GM=,∴AM==,∴tan∠GAM=,∴tan∠PAN=,設(shè)點P的坐標為(n,n2+n2),∴AN=4+n,PN=n2+n2,∴,解得,n1=,n2=4(舍去),當n=時,n2+n2=,∴點P的坐標為(,),即存在點P(,),使∠BAP=∠BCO∠BAG.【點睛】本題是一道二次函數(shù)綜合題,解答本題的關(guān)鍵是明確題意,作出合適的輔助線,找出所求問題需要的條件,利用三角形相似、銳角三角函數(shù)和二次函數(shù)的性質(zhì)解答.14.如圖1,拋物線y=ax2+2x+c與x軸交于A(﹣4,0),B(1,0)兩點,過點B的直線y=kx+分別與y軸及拋物線交于點C,D.(1)求直線和拋物線的表達式;(2)動點P從點O出發(fā),在x軸的負半軸上以每秒1個單位長度的速度向左勻速運動,設(shè)運動時間為t秒,當t為何值時,△PDC為直角三角形?請直接寫出所有滿足條件的t的值;(3)如圖2,將直線BD沿y軸向下平移4個單位后,與x軸,y軸分別交于E,F(xiàn)兩點,在拋物線的對稱軸上是否存在點M,在直線EF上是否存在點N,使DM+MN的值最???若存在,求出其最小值及點M,N的坐標;若不存在,請說明理由.【答案】(1)拋物線解析式為:y=,BD解析式為y=﹣;(2)t的值為、.(3)N點坐標為(﹣2,﹣2),M點坐標為(﹣,﹣),. 【解析】分析:(1)利用待定系數(shù)法求解可得;(2)先求得點D的坐標,過點D分別作DE⊥x軸、DF⊥y軸,分P1D⊥P1C、P2D⊥DC、P3C⊥DC三種情況,利用相似三角形的性質(zhì)逐一求解可得;(3)通過作對稱點,將折線轉(zhuǎn)化成兩點間距離,應用兩點之間線段最短.詳解:(1)把A(﹣4,0),B(1,0)代入y=ax2+2x+c,得,解得:,∴拋物線解析式為:y=,∵過點B的直線y=kx+,∴代入(1,0),得:k=﹣,∴BD解析式為y=﹣;(2)由得交點坐標為D(﹣5,4),如圖1,過D作DE⊥x軸于點E,作DF⊥y軸于點F,當P1D⊥P1C時,△P1DC為直角三角形,則△DEP1∽△P1OC,∴=,即=,解得t=,當P2D⊥DC于點D時,△P2DC為直角三角形由△P2DB∽△DEB得=,即=,解得:t=;當P3C⊥DC時,△DFC∽△COP3,∴=,即=,解得:t=,∴t的值為、.(3)由已知直線EF解析式為:y=﹣x﹣,在拋物線上取點D的對稱點D′,過點D′作D′N⊥EF于點N,交拋物線對稱軸于點M過點N作NH⊥DD′于點H,此時,DM+MN=D′N最?。畡t△EOF∽△NHD′設(shè)點N坐標為(a,﹣),∴=,即=,解得:a=﹣2,則N點坐標為(﹣2,﹣2),求得直線ND′的解析式為y=x+1,當x=﹣時,y=﹣,∴M點坐標為(﹣,﹣),此時,DM+MN的值最小為==2.點睛:本題是二次函數(shù)和幾何問題綜合題,應用了二次函數(shù)性質(zhì)以及轉(zhuǎn)化的數(shù)學思想、分類討論思想.解題時注意數(shù)形結(jié)合.15.如圖,拋物線y=ax2+bx經(jīng)過△OAB的三個頂點,其中點A(1,),點B(3,﹣),O為坐標原點.(1)求這條拋物線所對應的函數(shù)表達式;(2)若P(4,m),Q(t,n)為該拋物線上的兩點,且n<m,求t的取值范圍;(3)若C為線段AB上的一個動點,當點A,點B到直線OC的距離之和最大時,求∠BOC的大小及點C的坐標.【答案】(1);(2)t>4;(3)∠BOC=60176。,C(,)【解析】分析:(1)將已知點坐標代入y=ax2+bx,求出a、b的值即可;(2)利用拋物線增減性可解問題;(3)觀察圖形,點A,點B到直線OC的距離之和小于等于AB;同時用點A(1,),點B(3,﹣)求出相關(guān)角度.詳解:(1)把點A(1,),點B(3,﹣)分別代入y=ax2+bx得 ,解得∴y=﹣(2)由(1)拋物線開口向下,對稱軸為直線x=,當x>時,y隨x的增大而減小,∴當t>4時,n<m.(3)如圖,設(shè)拋物線交x軸于點F,分別過點A、B作AD⊥OC于點D,BE⊥OC于點E∵AC≥AD,BC≥BE,∴AD+BE≤AC+BE=AB,∴當OC⊥AB時,點A,點B到直線OC的距離之和最大.∵A(1,),點B(3,﹣),∴∠AOF=60176。,∠BOF=30176。,∴∠AOB=90176。,∴∠ABO=30176。.當OC⊥AB時,∠BOC=60176。,點C坐標為(,).點睛:本題考查綜合考查用待定系數(shù)法求二次函數(shù)解析式,拋物線的增減性.解答問題時注意線段最值問題的轉(zhuǎn)化方法.
點擊復制文檔內(nèi)容
法律信息相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1