freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx全國各地中考模擬試卷數(shù)學(xué)分類:二次函數(shù)綜合題匯編含答案解析-閱讀頁

2025-03-30 22:22本頁面
  

【正文】 ②利用二次函數(shù)的性質(zhì)結(jié)合面積法求出P點(diǎn)到直線BC的距離的最大值.12.如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對稱軸l為x=﹣1.(1)求拋物線的解析式并寫出其頂點(diǎn)坐標(biāo);(2)若動(dòng)點(diǎn)P在第二象限內(nèi)的拋物線上,動(dòng)點(diǎn)N在對稱軸l上.①當(dāng)PA⊥NA,且PA=NA時(shí),求此時(shí)點(diǎn)P的坐標(biāo);②當(dāng)四邊形PABC的面積最大時(shí),求四邊形PABC面積的最大值及此時(shí)點(diǎn)P的坐標(biāo).【答案】(1)y=﹣(x+1)2+4,頂點(diǎn)坐標(biāo)為(﹣1,4);(2)①點(diǎn)P(﹣﹣1,2);②P(﹣ ,)【解析】試題分析:(1)將B、C的坐標(biāo)代入已知的拋物線的解析式,由對稱軸為即可得到拋物線的解析式;(2)①首先求得拋物線與x軸的交點(diǎn)坐標(biāo),然后根據(jù)已知條件得到PD=OA,從而得到方程求得x的值即可求得點(diǎn)P的坐標(biāo);②,表示出來得到二次函數(shù),求得最值即可.試題解析:(1)∵拋物線與x軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對稱軸l為,∴,解得:,∴二次函數(shù)的解析式為=,∴頂點(diǎn)坐標(biāo)為(﹣1,4);(2)令,解得或,∴點(diǎn)A(﹣3,0),B(1,0),作PD⊥x軸于點(diǎn)D,∵點(diǎn)P在上,∴設(shè)點(diǎn)P(x,),①∵PA⊥NA,且PA=NA,∴△PAD≌△AND,∴OA=PD,即,解得x=(舍去)或x=,∴點(diǎn)P(,2);②設(shè)P(x,y),則,∵=OB?OC+AD?PD+(PD+OC)?OD=====,∴當(dāng)x=時(shí),=,當(dāng)x=時(shí),=,此時(shí)P(,).考點(diǎn):1.二次函數(shù)綜合題;2.二次函數(shù)的最值;3.最值問題;4.壓軸題.13.如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+x﹣2與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,直線l經(jīng)過A,C兩點(diǎn),連接BC.(1)求直線l的解析式;(2)若直線x=m(m<0)與該拋物線在第三象限內(nèi)交于點(diǎn)E,與直線l交于點(diǎn)D,連接OD.當(dāng)OD⊥AC時(shí),求線段DE的長;(3)取點(diǎn)G(0,﹣1),連接AG,在第一象限內(nèi)的拋物線上,是否存在點(diǎn)P,使∠BAP=∠BCO﹣∠BAG?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.【答案】(1)y=;(2)DE=;(3)存在點(diǎn)P(,),使∠BAP=∠BCO﹣∠BAG,理由見解析.【解析】【分析】(1)根據(jù)題目中的函數(shù)解析式可以求得點(diǎn)A和點(diǎn)C的坐標(biāo),從而可以求得直線l的函數(shù)解析式;(2)根據(jù)題意作出合適的輔助線,利用三角形相似和勾股定理可以解答本題;(3)根據(jù)題意畫出相應(yīng)的圖形,然后根據(jù)銳角三角函數(shù)可以求得∠OAC=∠OCB,然后根據(jù)題目中的條件和圖形,利用銳角三角函數(shù)和勾股定理即可解答本題.【詳解】(1)∵拋物線y=x2+x2,∴當(dāng)y=0時(shí),得x1=1,x2=4,當(dāng)x=0時(shí),y=2,∵拋物線y=x2+x2與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,∴點(diǎn)A的坐標(biāo)為(4,0),點(diǎn)B(1,0),點(diǎn)C(0,2),∵直線l經(jīng)過A,C兩點(diǎn),設(shè)直線l的函數(shù)解析式為y=kx+b,得,即直線l的函數(shù)解析式為y=?x?2; (2)直線ED與x軸交于點(diǎn)F,如圖1所示,由(1)可得,AO=4,OC=2,∠AOC=90176。∴EF∥OC,∴△ADF∽△ACO,∴,解得,AF=,DF=,∴OF=4=,∴m=,當(dāng)m=時(shí),y=(?)2+()2=,∴EF=,∴DE=EFFD=?=;(3)存在點(diǎn)P,使∠BAP=∠BCO∠BAG, 理由:作GM⊥AC于點(diǎn)M,作PN⊥x軸于點(diǎn)N,如圖2所示,∵點(diǎn)A(4,0),點(diǎn)B(1,0),點(diǎn)C(0,2),∴OA=4,OB=1,OC=2,∴tan∠OAC=,tan∠OCB=,AC=2,∴∠OAC=∠OCB,∵∠BAP=∠BCO∠BAG,∠GAM=∠OAC∠BAG,∴∠BAP=∠GAM,∵點(diǎn)G(0,1),AC=2,OA=4,∴OG=1,GC=1,∴AG=,即,解得,GM=,∴AM==,∴tan∠GAM=,∴tan∠PAN=,設(shè)點(diǎn)P的坐標(biāo)為(n,n2+n2),∴AN=4+n,PN=n2+n2,∴,解得,n1=,n2=4(舍去),當(dāng)n=時(shí),n2+n2=,∴點(diǎn)P的坐標(biāo)為(,),即存在點(diǎn)P(,),使∠BAP=∠BCO∠BAG.【點(diǎn)睛】本題是一道二次函數(shù)綜合題,解答本題的關(guān)鍵是明確題意,作出合適的輔助線,找出所求問題需要的條件,利用三角形相似、銳角三角函數(shù)和二次函數(shù)的性質(zhì)解答.14.如圖1,拋物線y=ax2+2x+c與x軸交于A(﹣4,0),B(1,0)兩點(diǎn),過點(diǎn)B的直線y=kx+分別與y軸及拋物線交于點(diǎn)C,D.(1)求直線和拋物線的表達(dá)式;(2)動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在x軸的負(fù)半軸上以每秒1個(gè)單位長度的速度向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),△PDC為直角三角形?請直接寫出所有滿足條件的t的值;(3)如圖2,將直線BD沿y軸向下平移4個(gè)單位后,與x軸,y軸分別交于E,F(xiàn)兩點(diǎn),在拋物線的對稱軸上是否存在點(diǎn)M,在直線EF上是否存在點(diǎn)N,使DM+MN的值最小?若存在,求出其最小值及點(diǎn)M,N的坐標(biāo);若不存在,請說明理由.【答案】(1)拋物線解析式為:y=,BD解析式為y=﹣;(2)t的值為、.(3)N點(diǎn)坐標(biāo)為(﹣2,﹣2),M點(diǎn)坐標(biāo)為(﹣,﹣),. 【解析】分析:(1)利用待定系數(shù)法求解可得;(2)先求得點(diǎn)D的坐標(biāo),過點(diǎn)D分別作DE⊥x軸、DF⊥y軸,分P1D⊥P1C、P2D⊥DC、P3C⊥DC三種情況,利用相似三角形的性質(zhì)逐一求解可得;(3)通過作對稱點(diǎn),將折線轉(zhuǎn)化成兩點(diǎn)間距離,應(yīng)用兩點(diǎn)之間線段最短.詳解:(1)把A(﹣4,0),B(1,0)代入y=ax2+2x+c,得,解得:,∴拋物線解析式為:y=,∵過點(diǎn)B的直線y=kx+,∴代入(1,0),得:k=﹣,∴BD解析式為y=﹣;(2)由得交點(diǎn)坐標(biāo)為D(﹣5,4),如圖1,過D作DE⊥x軸于點(diǎn)E,作DF⊥y軸于點(diǎn)F,當(dāng)P1D⊥P1C時(shí),△P1DC為直角三角形,則△DEP1∽△P1OC,∴=,即=,解得t=,當(dāng)P2D⊥DC于點(diǎn)D時(shí),△P2DC為直角三角形由△P2DB∽△DEB得=,即=,解得:t=;當(dāng)P3C⊥DC時(shí),△DFC∽△COP3,∴=,即=,解得:t=,∴t的值為、.(3)由已知直線EF解析式為:y=﹣x﹣,在拋物線上取點(diǎn)D的對稱點(diǎn)D′,過點(diǎn)D′作D′N⊥EF于點(diǎn)N,交拋物線對稱軸于點(diǎn)M過點(diǎn)N作NH⊥DD′于點(diǎn)H,此時(shí),DM+MN=D′N最?。畡t△EOF∽△NHD′設(shè)點(diǎn)N坐標(biāo)為(a,﹣),∴=,即=,解得:a=﹣2,則N點(diǎn)坐標(biāo)為(﹣2,﹣2),求得直線ND′的解析式為y=x+1,當(dāng)x=﹣時(shí),y=﹣,∴M點(diǎn)坐標(biāo)為(﹣,﹣),此時(shí),DM+MN的值最小為==2.點(diǎn)睛:本題是二次函數(shù)和幾何問題綜合題,應(yīng)用了二次函數(shù)性質(zhì)以及轉(zhuǎn)化的數(shù)學(xué)思想、分類討論思想.解題時(shí)注意數(shù)形結(jié)合.15.如圖,拋物線y=ax2+bx經(jīng)過△OAB的三個(gè)頂點(diǎn),其中點(diǎn)A(1,),點(diǎn)B(3,﹣),O為坐標(biāo)原點(diǎn).(1)求這條拋物線所對應(yīng)的函數(shù)表達(dá)式;(2)若P(4,m),Q(t,n)為該拋物線上的兩點(diǎn),且n<m,求t的取值范圍;(3)若C為線段AB上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)A,點(diǎn)B到直線OC的距離之和最大時(shí),求∠BOC的大小及點(diǎn)C的坐標(biāo).【答案】(1);(2)t>4;(3)∠BOC=60176?!螧OF=30176?!唷螦BO=30176。點(diǎn)C坐標(biāo)為(,).點(diǎn)睛:本題考查綜合考查用待定系數(shù)法求二次函數(shù)解析式,拋物線的增減性.解答問題時(shí)注意線段最值問題的轉(zhuǎn)化方法.
點(diǎn)擊復(fù)制文檔內(nèi)容
法律信息相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1