freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx九年級數(shù)學-平行四邊形的專項-培優(yōu)練習題含詳細答案-資料下載頁

2025-03-30 22:22本頁面
  

【正文】 如圖3,延長PM交EA延長線于G,∴∠GAM=90176。.∵M為AD的中點,∴AM=DM.∵四邊形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90176。,AB∥CD.∴∠GAM=∠PDM.在△GAM和△PDM中,∠GAM=∠PDM,AM=DM,∠AMG=∠DMP,∴△GAM≌△PDM(ASA).∴MG=MP.在△EMP和△EMG中,PM=GM,∠PME=∠GME,ME=ME,∴△EMP≌△EMG(SAS).∴EG=EP.∴AG+AE=EP.∴PD+AE=EP,即EP=AE+DP.(3),值不變,理由如下:如圖1,連接BM交EF于點Q,過點F作FK⊥AB于點K,交BM于點O,∵EM=EB,∠MEF=∠BEF,∴EF⊥MB,即∠FQO=90176。.∵四邊形FKBC是矩形,∴KF=BC,F(xiàn)C=KB.∵∠FKB=90176。,∴∠KBO+∠KOB=90176。.∵∠QOF+∠QFO=90176。,∠QOF=∠KOB,∴∠KBO=∠OFQ.∵∠A=∠EKF=90176。,∴△ABM∽△KFE.∴即.∵AB=2AD=2BC,BK=CF,∴.∴的值不變.考點:;;;;.14.已知邊長為1的正方形ABCD中, P是對角線AC上的一個動點(與點A、C不重合),過點P作PE⊥PB ,PE交射線DC于點E,過點E作EF⊥AC,垂足為點F.(1)當點E落在線段CD上時(如圖),①求證:PB=PE;②在點P的運動過程中,PF的長度是否發(fā)生變化?若不變,試求出這個不變的值,若變化,試說明理由;(2)當點E落在線段DC的延長線上時,在備用圖上畫出符合要求的大致圖形,并判斷上述(1)中的結論是否仍然成立(只需寫出結論,不需要證明);(3)在點P的運動過程中,△PEC能否為等腰三角形?如果能,試求出AP的長,如果不能,試說明理由.【答案】(1)①證明見解析;②點PP在運動過程中,PF的長度不變,值為;(2)畫圖見解析,成立 ;(3)能,1.【解析】分析:(1)①過點P作PG⊥BC于G,過點P作PH⊥DC于H,如圖1.要證PB=PE,只需證到△PGB≌△PHE即可;②連接BD,如圖2.易證△BOP≌△PFE,則有BO=PF,只需求出BO的長即可.(2)根據(jù)條件即可畫出符合要求的圖形,同理可得(1)中的結論仍然成立.(3)可分點E在線段DC上和點E在線段DC的延長線上兩種情況討論,通過計算就可求出符合要求的AP的長.詳解:(1)①證明:過點P作PG⊥BC于G,過點P作PH⊥DC于H,如圖1.∵四邊形ABCD是正方形,PG⊥BC,PH⊥DC,∴∠GPC=∠ACB=∠ACD=∠HPC=45176。.∴PG=PH,∠GPH=∠PGB=∠PHE=90176。.∵PE⊥PB即∠BPE=90176。,∴∠BPG=90176。﹣∠GPE=∠EPH.在△PGB和△PHE中,∴△PGB≌△PHE(ASA),∴PB=PE.②連接BD,如圖2.∵四邊形ABCD是正方形,∴∠BOP=90176。.∵PE⊥PB即∠BPE=90176。,∴∠PBO=90176。﹣∠BPO=∠EPF.∵EF⊥PC即∠PFE=90176。,∴∠BOP=∠PFE.在△BOP和△PFE中, ∴△BOP≌△PFE(AAS),∴BO=PF.∵四邊形ABCD是正方形,∴OB=OC,∠BOC=90176。,∴BC=OB.∵BC=1,∴OB=,∴PF=.∴點PP在運動過程中,PF的長度不變,值為.(2)當點E落在線段DC的延長線上時,符合要求的圖形如圖3所示.同理可得:PB=PE,PF=.(3)①若點E在線段DC上,如圖1.∵∠BPE=∠BCE=90176。,∴∠PBC+∠PEC=180176。.∵∠PBC<90176。,∴∠PEC>90176。.若△PEC為等腰三角形,則EP=EC.∴∠EPC=∠ECP=45176。,∴∠PEC=90176。,與∠PEC>90176。矛盾,∴當點E在線段DC上時,△PEC不可能是等腰三角形.②若點E在線段DC的延長線上,如圖4.若△PEC是等腰三角形,∵∠PCE=135176。,∴CP=CE,∴∠CPE=∠CEP=176。.∴∠APB=180176。﹣90176。﹣176。=176。.∵∠PRC=90176。+∠PBR=90176。+∠CER,∴∠PBR=∠CER=176。,∴∠ABP=176。,∴∠ABP=∠APB.∴AP=AB=1.∴AP的長為1.點睛:本題主要考查了正方形的性質(zhì)、等腰三角形的性質(zhì)、全等三角形的判定與性質(zhì)、角平分線的性質(zhì)、勾股定理、四邊形的內(nèi)角和定理、三角形的內(nèi)角和定理及外角性質(zhì)等知識,有一定的綜合性,而通過添加輔助線證明三角形全等是解決本題的關鍵.15.已知,以為邊在外作等腰,其中.(1)如圖①,若,求的度數(shù).(2)如圖②,,.①若,的長為______.②若改變的大小,但,的面積是否變化?若不變,求出其值;若變化,說明變化的規(guī)律.【答案】(1)120176。;(2)①2;②2【解析】試題分析:(1)根據(jù)SAS,可首先證明△AEC≌△ABD,再利用全等三角形的性質(zhì),可得對應角相等,根據(jù)三角形的外角的定理,可求出∠BFC的度數(shù);(2)①如圖2,在△ABC外作等邊△BAE,連接CE,利用旋轉法證明△EAC≌△BAD,可證∠EBC=90176。,EC=BD=6,因為BC=4,在Rt△BCE中,由勾股定理求BE即可;②過點B作BE∥AH,并在BE上取BE=2AH,連接EA,EC.并取BE的中點K,連接AK,仿照(2)利用旋轉法證明△EAC≌△BAD,求得EC=DB,利用勾股定理即可得出結論.試題解析:解:(1)∵AE=AB,AD=AC,∵∠EAB=∠DAC=60176。,∴∠EAC=∠EAB+∠BAC,∠DAB=∠DAC+∠BAC,∴∠EAC=∠DAB,在△AEC和△ABD中∴△AEC≌△ABD(SAS),∴∠AEC=∠ABD,∵∠BFC=∠BEF+∠EBF=∠AEB+∠ABE,∴∠BFC=∠AEB+∠ABE=120176。,故答案為120176。;(2)①如圖2,以AB為邊在△ABC外作正三角形ABE,連接CE.由(1)可知△EAC≌△BAD.∴EC=BD.∴EC=BD=6,∵∠BAE=60176。,∠ABC=30176。,∴∠EBC=90176。.在RT△EBC中,EC=6,BC=4,∴EB===2∴AB=BE=2.②若改變α,β的大小,但α+β=90176。,△ABC的面積不變化,以下證明:如圖2,作AH⊥BC交BC于H,過點B作BE∥AH,并在BE上取BE=2AH,連接EA,EC.并取BE的中點K,連接AK.∵AH⊥BC于H,∴∠AHC=90176。.∵BE∥AH,∴∠EBC=90176。.∵∠EBC=90176。,BE=2AH,∴EC2=EB2+BC2=4AH2+BC2.∵K為BE的中點,BE=2AH,∴BK=AH.∵BK∥AH,∴四邊形AKBH為平行四邊形.又∵∠EBC=90176。,∴四邊形AKBH為矩形.∠ABE=∠ACD,∴∠AKB=90176。.∴AK是BE的垂直平分線.∴AB=AE.∵AB=AE,AC=AD,∠ABE=∠ACD,∴∠EAB=∠DAC,∴∠EAB+∠EAD=∠DAC+∠EAD,即∠EAC=∠BAD,在△EAC與△BAD中∴△EAC≌△BAD.∴EC=BD=6.在RT△BCE中,BE==2,∴AH=BE=,∴S△ABC=BC?AH=2考點:全等三角形的判定與性質(zhì);等腰三角形的性質(zhì)
點擊復制文檔內(nèi)容
環(huán)評公示相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1