【總結(jié)】第一篇:用均值不等式證明不等式 用均值不等式證明不等式 【摘要】:不等式的證明在競賽數(shù)學中占有重要地位.本文介紹了用均值不等式證明幾個不等式,我們在證明不等式時,常用到均值不等式。要求我們要認真分...
2024-10-28 10:42
【總結(jié)】[讀教材·填要點]1.三個正數(shù)的算術(shù)—幾何平均不等式如果a,b,c∈R+,那么a+b+c3≥,當且僅當時,等號成立.2.n個正數(shù)a1,a2,?,an的算術(shù)—幾何平均不等式對于n個正數(shù)a1,a2,
2025-07-24 16:36
【總結(jié)】3.三個正數(shù)的算術(shù)—幾何平均不等式1.定理3如果a,b,c∈R+,那么a+b+c3≥3abc,當且僅當時,等號成立,用文字語言可敘述為:三個正數(shù)的不小于它們的.(1)不等式a+b+c3≥3abc成立的條件是:,而等號
2025-07-24 10:50
2025-07-24 13:20
2025-07-24 13:14
2025-07-24 12:22
2025-07-24 08:54
2025-07-24 16:01
2025-07-24 15:43
2025-07-24 16:47
2025-07-24 15:31
2025-07-24 13:02
2025-07-24 08:42
2025-07-24 14:02
【總結(jié)】Mathwang幾個經(jīng)典不等式的關系一幾個經(jīng)典不等式(1)均值不等式設是實數(shù),等號成立.(2)柯西不等式設是實數(shù),則當且僅當或存在實數(shù),使得時,等號成立.(3)排序不等式設,為兩個數(shù)組,是的任一排列,則當且僅當或時,等號成立.(4)切比曉夫不等式對于兩個數(shù)組:,,有當且僅當或時,等號成立.二相關證明(1)用排
2025-04-17 08:24