【總結(jié)】執(zhí)教者市三中江建軍節(jié)選自人教版八年級上冊20世紀(jì)著名數(shù)學(xué)家赫爾曼·外爾所說的,“對稱是一種思想,人們畢生追求,并創(chuàng)造次序、美麗和完善……”如圖,在△ABC中,∠ABC的角平分線交AC于P,一個同學(xué)得到了PA=PC,你覺得對嗎?P問題添加什
2024-11-09 01:34
【總結(jié)】初中數(shù)學(xué)八年級上冊(蘇科版)主備教師:張大偉等腰三角形的軸對稱性(2)1、等腰三角形有哪些性質(zhì)?2、在一個三角形中,如果有兩個角相等,那么這兩個角所對的邊的大小有什么關(guān)系?21AB(1).如圖,在一張長方形的紙條上任意畫一條截線AB,所得∠1與∠2相等嗎?為什么?如圖
2024-11-30 04:09
【總結(jié)】◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三
2025-06-15 12:08
【總結(jié)】問題:我們知道三角形中存在不等邊的三角形,那么邊不等,會形成它們所對角也不等嗎?例如:在△ABC中,ABAC,那么∠C∠B故∠C>
2024-11-09 12:46
【總結(jié)】第15章軸對稱圖形與等腰三角形等腰三角形第1課時等腰三角形的性質(zhì),△ABC中,AB=AC,∠B=70°,則∠A=(D)°°°°,在△ABC中,AB=AC,D為BC上一點,且DA=DC,BD=BA,則∠B的大小為(
2025-06-15 02:17
【總結(jié)】第15章軸對稱圖形與等腰三角形等腰三角形第2課時等腰三角形的判定知識點1等腰三角形的判定△ABC中,其兩個內(nèi)角如下,則能判定△ABC為等腰三角形的是(C)A.∠A=40°,∠B=50°B.∠A=40°,∠B=60°C.∠A=20&
【總結(jié)】等腰三角形重難點易錯點解析題面:下列說法正確的是()形的中線、高、角分線三線合一C.“等邊對等角”和“等角對等邊”都是等腰三角形的性質(zhì)等腰三角形的定義:兩邊相等的三角形是等腰三角形等腰三角形的性質(zhì):等邊對等角、三線合一等腰三角形的判定:等角對等邊金題精講題
2024-12-03 12:54
【總結(jié)】等腰三角形第一課時知識回顧問題探究課堂小結(jié)隨堂檢測(1)什么是軸對稱圖形?(2)三角形是軸對稱圖形嗎?(3)什么樣的三角形是軸對稱圖形?知識回顧問題探究課堂小結(jié)隨堂檢測活動1探究一:探索等腰三角形的性質(zhì)重點知識★回顧舊知,回憶等腰三角形的概念及腰、底邊、頂角、底角
2025-06-12 12:41
【總結(jié)】第1頁(共4頁)《等腰三角形的軸對稱性》(3)一.選擇題1.如圖,在Rt△ABC中,∠ACB=90°,AB=10,CD是AB邊上的中線,則CD的長是()A.20B.10C.5D.2.如圖所示,Rt△ABC中,∠C=90°,AB的垂直平分線DE交B
2025-01-10 03:23
【總結(jié)】第十三章遵義學(xué)練考數(shù)學(xué)8上【R】等腰三角形等腰三角形第1課時等腰三角形的性質(zhì)感謝您使用本課件,歡迎您提出寶貴意見!
2025-06-16 02:02
【總結(jié)】第十三章軸對稱等腰三角形等腰三角形第2課時等腰三角形的判定2022秋季數(shù)學(xué)八年級上冊?R等腰三角形的判定一個三角形有兩個角,則這兩個角所對的邊也(簡寫成“等角對”).自我診斷1.在△ABC中,∠B=∠C,AB=5,則AC的
2025-06-13 13:38
【總結(jié)】第十三章軸對稱等腰三角形等腰三角形第1課時等腰三角形的性質(zhì)2022秋季數(shù)學(xué)八年級上冊?R等邊對等角等腰三角形的(簡寫成“”).自我診斷1.在△ABC中,若AB=AC,則∠B=;若∠B=80°,
【總結(jié)】第十三章軸對稱遵義學(xué)練考數(shù)學(xué)8上【R】等腰三角形等腰三角形第1課時等腰三角形的性質(zhì)感謝您使用本課件,歡迎您提出寶貴意見!
2025-06-16 01:59
【總結(jié)】第十三章軸對稱遵義學(xué)練考數(shù)學(xué)8上【R】等腰三角形等腰三角形第2課時等腰三角形的判定感謝您使用本課件,歡迎您提出寶貴意見!
2025-06-16 02:09