【總結】因式分解練習題?一、填空題:2.(a-3)(3-2a)=_______(3-a)(3-2a);12.若m2-3m+2=(m+a)(m+b),則a=______,b=______;15.當m=______時,x2+2(m-3)x+25是完全平方式.二、選擇題:1.下列各式的因式分解結果中,正確的是()A.a2b+7ab-b
2025-06-23 17:44
【總結】因式分解練習題(提取公因式)專項訓練一:確定下列各多項式的公因式。1、2、3、4、5、6、7、8、9、10、專項訓練二:利用乘法分配律的逆運算填空。1、2、3、4、專項訓練三、在下列各式
2025-03-24 23:50
【總結】第一篇:經典的因式分解練習題有答案 因式分解練習題 一、填空題: 2.(a-3)(3-2a)=_______(3-a)(3-2a); 12.若m2-3m+2=(m+a)(m+b),則a=___...
2024-10-13 19:31
【總結】第一講:因式分解一提公因式法【知識要點】1、分解因式的概念把一個多項式公成幾個整式的積的形式,這種變形叫做把這個多項式。2、分解因式與整式乘法的關系分解因式與整式乘法是的恒等變形。3.分解因式
2025-03-24 23:51
【總結】因式分解1提公因式法一、知識點多項式mc+mb+ma中的每一項都含有一個相同的因式_______,我們稱之為_________.mc+mb+ma=_____________二、強化練習2公式法3十字相乘
2024-11-23 13:51
【總結】整式的乘除與因式分解一、整式的乘除:1、合并同類項:把多項式中的同類項合并成一項,叫做合并同類項.例如:;;2、同底數冪的乘法法則:(都是正整數)同底數冪相乘,底數不變,指數相加.例1:;例2:計算(1)(2)3、冪的乘方法則:(都是正整數).
2025-03-25 03:12
【總結】因式分解練習題一、填空題:1、4a3+8a2+24a=4a()2.(a-3)(3-2a)=_______(3-a)(3-2a);3、a3b-ab3=ab(a-b)()4、(1-a)mn+a-1=(mn-1)()5、=()26、()a2-6a+1=()27、x2-y2-z2+2yz=x2
2025-06-25 18:21
【總結】十字相乘法因式分解練習題一、選擇題1.如果,那么p等于( )A.abB.a+bC.-abD.-(a+b)2.如果,則b為( )A.5B.-6
2025-03-24 23:10
【總結】《整式的乘法與因式分解》綜合練習題一、選擇題1.若,則n等于( ?。〢.10 B.5 C.3 D.62.如果寫成下列各式,正確的共有( ?。伲虎?;③;④;⑤;⑥;⑦;⑧A.7個 B.6個 C.5個 D.4個3.已知,則( ?。〢. B. C
2025-03-25 03:11
【總結】1.)3a3b2c-12a2b2c2+9ab2c32.)16x2-813.)xy+6-2x-3y4.)x2(x-y)+y2(y-x)5.)2x2-(a-2b)x-ab6.)a4-9a2b27.)x3+3x2
2025-03-25 07:11
【總結】高一數學練習題之因式分解班級-------------姓名-------------------一、公式法例1分解因式:(1)=(2)=(3)= 練習分解因式:(1)4a2-9b2=(2)-25a2y4+16b16(3)m2-2mn+n2=2.提公因式后用公式例2分解因式:(
2025-04-04 05:00
【總結】整式乘除與因式分解專項練習知識網絡歸納整式的乘法 一、整式綜合計算:1、冪運算:(1)(-3a2b3c)3= (2)(3)[-(-a2b)3·a]3= (4)(5)= (6)=
【總結】1、xy+6-2x-3y2、x2(x-y)+y2(y-x)3、2x2-(a-2b)x-ab4、a4-9a2b25、ab(x2-y2)+xy(a2-b2)6、(x+y)(a-b-c)+(x-y)(b+c-a)7、a2-a-b2-b
2024-11-23 13:13
【總結】因式分解(簡單練習)1、基本方法⑴提公因式法:各項都含有的公共的因式叫做這個多項式各項的公因式。例如:am-bm+cm=m(a-b+c);-am+bm+cm=-m(a-b-c);a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。⑵公式法:平方差公式:a2-b2=(a+b)(a-b);例如:a2-25b2=(a+5b)(a-5