【文章內(nèi)容簡介】
s anomalies throughout the Earth.(這種不規(guī)則被認為是由于【due to由于 due應當?shù)摹勘榧暗厍颉総hroughout介詞:遍及】的質(zhì)量【mass這里是質(zhì)量的意思】分布不規(guī)則【anomaly異常、不規(guī)則】)The geoid remains important to the surveyor, as it is the surface to which all terrestrial measurements are related.(由于它是對于所有有關的陸地測量的參考面【surface這里譯為參考面】,對測量者來說大地水準面依然【remain】重要)As the direction of the gravity vector (termed the vertical) is everywhere normal to the geoid, it defines the direction of the surveyor’s plumbbob line.(由于重力矢量(稱之為【term稱為】垂線【vertical垂線n.、垂直的adj.】)的方向在各處都垂直【normal垂直的、正交的、垂線、法線】于大地水準面,由測量者的鉛垂線【plumbbob line】方向就可以表示【define明確表示】)Thus any instrument which is horizontalized by means of a spirit bubble will be referenced to the local equipotential surface.(因而任何依賴【by means of依賴】水準氣泡【spirit bubble】整平【horizontalize】的儀器都參考的是局域等位面)Elevations are related to the equipotential surface passing through MSL.(高程就是關于通過平均海平面的等位面的數(shù)據(jù))【或者翻譯為:高程與過平均海平面的等位面有關or高程參考的是過平均海平面的等位面】Such elevations or heights are called orthometric heights (H) and are the linear distances measured along the gravity vector from a point to the equipotential surface as a reference datum.(這樣的高程或高度被稱為正高(H),沿著重力矢量從一個點到作為參考基準的等位面的直線【linear直線的】距離)As such, the geoid is the equipotential surface that best fits MSL and heights in question, referred to as heights above or below MSL.(同樣地,大地水準面是最符合MSL的等位面;正被討論的【in question正在討論的、正在討論】高度,指的是【refer to提到;as當作 合起來可以譯為指的是】高于或低于MSL的高度)It can be seen from this that orthormetric heights are datum dependent.(由此可以看出,正高由其基準面決定【dependent由……決定的、依靠的】)The Reference Ellipsoid(參考橢球)The ellipsoid is a mathematical surface which provides a convenient model of the size and shape of the Earth.(參考橢球是一個數(shù)學曲面,可以提供一個關于地球的大小及形狀的方便的【convenient】模型)It is represented by an ellipse rotated about its minor axis and is defined by its semimajor axis a or the flattening f.(由一個橢圓繞它的短軸【minor axis】旋轉(zhuǎn)【rotate】表示,用它的長半軸a和扁率f來定義)The ellipsoid is chosen to best meet the needs of a particular geodetic datum system design.(這個橢球被選擇來最滿足特定大地基準系統(tǒng)設計的需要【meet one’s need滿足……的需要】)【即在設計一套特定的大地基準系統(tǒng)前首先選擇一個滿足系統(tǒng)設計的橢球】Although the ellipsoid i