【總結】§借助媒體作決策教學目標:通過對本節(jié)內容的學習,使我們初步了解到現實生活中,我們如何利用并借助于媒體作決策,并通過對一些具體問題的分析,探究“為了作出正確的決策,如何全面分析媒體信息”。在探究過程中,培養(yǎng)學生分析問題的能力,在經歷運用數學信息作出決策的過程中,發(fā)展統(tǒng)計觀念。教學重點:如何借助媒體進行數據的收
2025-10-29 01:07
【總結】掌握存在型探索與規(guī)律型探索問題的解題方法與策略(一)例題剖析例1如圖已知直線MN與以AB為直徑的半圓相切于點C,∠A=28°(1)求∠ACM的度數:
2025-10-29 02:17
【總結】東川一中程智慧①②③④⑤ABCEDP如果兩個相似圖形的每組對應點所在的直線過同一個點,那么這兩個圖形叫位似圖形.這個點叫位似中心,這時相似比又叫位似比.OP(1)(3)(2)★問題★靈感智慧1.以上三圖中有哪些是位似
2025-10-28 19:14
【總結】問題:生活中哪些事情一定會發(fā)生,哪些事情一定不發(fā)生,哪些事情可能發(fā)生?1、分別判斷下列事件哪個是一定發(fā)生?哪個是一定不發(fā)生?①從一個只裝有紅球的盒子里摸出一個紅球②人可以不喝水;③投一枚骰子(點數為1—6)投出7點;④人總有一天會死去;⑤電視機不接電源,電視機播放節(jié)目;⑥紙放到火上,紙被點燃。①、④、⑥一
2025-10-28 23:44
【總結】(5)四邊形①探索并了解多邊形的內角和與外角和公式,了解正多邊形的概念。②掌握平行四邊形、矩形、菱形、正方形、梯形的概念和性質,了解它們之間的關系;了解四邊形的不穩(wěn)定性。③探索并掌握平行四邊形的有關性質[1]和四邊形是平行四邊形的條件[2]?!芴?/span>
2025-10-28 13:18
【總結】方程的簡單變形[一]等式性質1:方程兩邊都加上或都減去同一個數或同一個整式,方程的解不變X+2=5X=3(X+2)-2=5-2例1:解下列方程(1)x-3=6(2)3x=2x+1解(1):x-3+3=6+3x=9解(2):3x=2x-1x-3=63x-2x=2x-1-2x
2025-11-01 22:54
【總結】認識不等式金雞亭中學:許美茹問題1:世紀公園的票價是:每人5元;一次購票滿30張,每張票可少收1元。某班有27名少先隊員去世紀公園進行活動。當領隊王小華準備好了零錢到售票處買27張票時,愛動腦筋的李敏同學喊住了王小華,提議買30張票。但有的同學不明白,明明我們只有27人,買30張票,豈不是“浪費”嗎?那么,究竟李敏的提
2025-10-29 02:26
【總結】簡單的旋轉作圖?旋轉的內涵:圖形繞一定點沿順時針或逆時針方向轉動一定角度.?旋轉的性質:對應點與旋轉中心的連線所成的角相等;對應點到旋轉中心的距離相等.?作
【總結】(2)我們已熟悉尺規(guī)的兩個基本作圖:畫線段,畫角.那么利用尺規(guī)還能解決什么作圖問題呢?;.圖24.4.7如圖,已知線段AB,畫出它的垂直平分線.圖24.4.7如圖,已知線段AB,畫出它的垂直平分線.以點A為圓心,以大于AB一半的長
2025-07-23 05:42
【總結】4361(6)4361(5)916(4)916(3)254(2)254(1)??????計算下列式子.并觀察他們之間有什么聯系?1001014412123???????????????(1)425=25=10(2
2025-10-29 01:41
【總結】中考數學專題講座創(chuàng)新型、開放型問題例1:某種細菌在培養(yǎng)過程中,細菌每半小時分裂一次(由一個分裂為兩個),經過兩小時,這種細菌由一個可分裂繁殖成()A:8個B:16個C:4個D:32個例1:某種細菌在
2025-10-29 00:38
【總結】講課人:鞏紅軍樂家彎學校初中數學組退出一、定義二、頂點與對稱軸三、解析式的求法四、圖象位置與a、b、c、的正負關系一、定義二、頂點與對稱軸四、圖象位置與a、b、c、的正負關系一般地,如果y=ax2+bx+c(a,b,c
2025-10-28 21:11
【總結】20厘米,點燃后每小時燃燒5厘米,燃燒時剩下的高度h(厘米)與燃燒時間t(時)的函數關系的圖象是()ACBDD2、下列圖象描述了“龜兔賽跑”的故事,若用S分別表示烏龜和兔子所行路程,t表示時間,則下列圖象中與情節(jié)相吻合的是()0stA0
2025-10-31 06:20
【總結】不等式的簡單變形讓我們先做個實驗吧!如圖所示,一個傾斜的天平兩邊分別放有重物,其質量分別為a和b(顯然ab),如果在兩邊盤內分別加上等量的砝碼c,那么盤子仍然像原來那樣傾斜即a+cb+c結論:不等式的性質1:如果ab,那么a+cb+c,a-cb-c這就是說,不等
【總結】一重點知識回顧⑴一次函數和反比例函數圖象的分布與系數k、b關系如下表一次函數Y=kx+b(k≠0)函數符號圖象分布示意圖性質圖象經過一、二、三象限k0b&g
2025-10-29 00:43