【總結(jié)】人工神經(jīng)網(wǎng)絡(luò)的研究方法及應(yīng)用 實(shí)例分析 2024.6.10 第一頁(yè),共二十頁(yè)。 一、人工神經(jīng)網(wǎng)絡(luò)知識(shí)回憶 ?1、什么是人工神經(jīng)網(wǎng)絡(luò)? ?:“人工神經(jīng)網(wǎng)絡(luò)是由具有適應(yīng)性的簡(jiǎn) 單...
2024-10-03 10:27
【總結(jié)】基于MATLAB的神經(jīng)網(wǎng)絡(luò)算法研究及仿真摘要:人工神經(jīng)網(wǎng)絡(luò)以其具有信息的分布存儲(chǔ)、并行處理以及自學(xué)習(xí)能力等優(yōu)點(diǎn),已經(jīng)在模式識(shí)別、信號(hào)處理、智能控制及系統(tǒng)建模等領(lǐng)域得到越來(lái)越廣泛的應(yīng)用。MATLAB中的神經(jīng)網(wǎng)絡(luò)工具箱是以人工神經(jīng)網(wǎng)絡(luò)理論為基礎(chǔ),利用MATLAB語(yǔ)言構(gòu)造出許多典型神經(jīng)網(wǎng)絡(luò)的傳遞函數(shù)、網(wǎng)絡(luò)權(quán)值修正規(guī)則和網(wǎng)絡(luò)訓(xùn)練方法,網(wǎng)絡(luò)的設(shè)計(jì)者可根據(jù)自己的需要調(diào)用工具箱中有關(guān)神經(jīng)網(wǎng)絡(luò)
2025-06-19 12:34
【總結(jié)】第十一章人工神經(jīng)網(wǎng)絡(luò)建模(ArtificialNeuronNets)?一、引例?1981年生物學(xué)家格若根(W.Grogan)和維什(W.Wirth)發(fā)現(xiàn)了兩類(lèi)蚊子(或飛蠓midges).他們測(cè)量了這兩類(lèi)蚊子每個(gè)個(gè)體的翼長(zhǎng)和觸角長(zhǎng),數(shù)據(jù)如下:?翼長(zhǎng)觸角長(zhǎng)類(lèi)別?
2025-01-04 04:52
【總結(jié)】基于BP神經(jīng)網(wǎng)絡(luò)的自校正PID控制研究摘要:基于反向傳播BP算法的神經(jīng)網(wǎng)絡(luò)具有很強(qiáng)的學(xué)習(xí)能力,適應(yīng)能力.本文詳細(xì)敘述了BP算法的原理,并將改進(jìn)的BP神經(jīng)網(wǎng)絡(luò)應(yīng)用在傳統(tǒng)的PID控制中,克服了PID控制在參數(shù)的調(diào)整過(guò)程中對(duì)于系統(tǒng)模型過(guò)分依賴的缺點(diǎn).利用MATLAB仿真的結(jié)果表明基于BP神經(jīng)網(wǎng)絡(luò)的自校正控制能夠使傳
2024-11-05 23:02
【總結(jié)】第四章基于人工神經(jīng)網(wǎng)絡(luò)的軟測(cè)量方法黃福珍本章主要內(nèi)容?人工神經(jīng)網(wǎng)絡(luò)概述?BP神經(jīng)網(wǎng)絡(luò)?RBF神經(jīng)網(wǎng)絡(luò)?基于神經(jīng)網(wǎng)絡(luò)的軟測(cè)量通用模型?基于神經(jīng)網(wǎng)絡(luò)的軟測(cè)量技術(shù)應(yīng)用實(shí)例人工神經(jīng)網(wǎng)絡(luò)概述?神經(jīng)網(wǎng)絡(luò)的基本概念?神經(jīng)網(wǎng)絡(luò)的特點(diǎn)?神經(jīng)網(wǎng)絡(luò)的發(fā)展簡(jiǎn)史?神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)類(lèi)型
2025-01-20 03:33
【總結(jié)】1 第3講人工神經(jīng)網(wǎng)絡(luò) 歐陽(yáng)柳波 第一頁(yè),共八十七頁(yè)。 2/65 人工神經(jīng)網(wǎng)絡(luò)的進(jìn)展 ?初創(chuàng)階段〔二十世紀(jì)四十年代至六十年代〕: ?1943年,美國(guó)心理學(xué)家W.S.Mccullo...
2024-10-03 10:43
【總結(jié)】I/64基于局部神經(jīng)網(wǎng)絡(luò)的電力需求預(yù)測(cè)研究摘要電力需求預(yù)測(cè)是實(shí)現(xiàn)電力系統(tǒng)安全、經(jīng)濟(jì)運(yùn)行的基礎(chǔ),對(duì)一個(gè)電力系統(tǒng)而言,提高電網(wǎng)運(yùn)行的安全性和經(jīng)濟(jì)性,改善電能質(zhì)量,都依賴于準(zhǔn)確的電力需求預(yù)測(cè)。中長(zhǎng)期電力預(yù)測(cè)可以為新發(fā)電機(jī)組的安裝以及電網(wǎng)的規(guī)劃、增容和改建等提供決策支持,是電力規(guī)劃部門(mén)的重要工作之一。本文提出基于局部神經(jīng)網(wǎng)絡(luò)的預(yù)測(cè)模型進(jìn)行電力需求預(yù)測(cè)。首先,采用模式預(yù)處理
2025-06-27 20:43
【總結(jié)】基于BP神經(jīng)網(wǎng)絡(luò)的函數(shù)擬合算法研究[摘要]人工神經(jīng)網(wǎng)絡(luò)(ArtificialNeuralNetwork,ANN)是智能領(lǐng)域的研究熱點(diǎn),目前已經(jīng)成功地應(yīng)用到信號(hào)處理、模式識(shí)別、機(jī)器控制、專(zhuān)家系統(tǒng)等領(lǐng)域中。在神經(jīng)網(wǎng)絡(luò)技術(shù)中,BP神經(jīng)網(wǎng)絡(luò)因具有結(jié)構(gòu)、學(xué)習(xí)算法簡(jiǎn)單等特點(diǎn),近年來(lái)得到廣泛的關(guān)注,相關(guān)技術(shù)已經(jīng)在預(yù)測(cè)、分類(lèi)等領(lǐng)域中實(shí)現(xiàn)產(chǎn)業(yè)化。本文針對(duì)經(jīng)典的函數(shù)擬合問(wèn)題,以BP神經(jīng)網(wǎng)絡(luò)為工具,力求
2025-06-24 15:39
【總結(jié)】5/5農(nóng)業(yè)生態(tài)環(huán)境信息統(tǒng)計(jì)報(bào)表機(jī)構(gòu)詳細(xì)名稱(chēng)(蓋章):上級(jí)主管單位名稱(chēng):機(jī)構(gòu)負(fù)責(zé)人(簽章):填表人(簽章):聯(lián)系電話:上報(bào)時(shí)間:
2025-06-30 18:31
【總結(jié)】BP神經(jīng)網(wǎng)絡(luò)模型與學(xué)習(xí)算法概述?Rumelhart,McClelland于1985年提出了BP網(wǎng)絡(luò)的誤差反向后傳BP(BackPropagation)學(xué)習(xí)算法?BP算法基本原理?利用輸出后的誤差來(lái)估計(jì)輸出層的直接前導(dǎo)層的誤差,再用這個(gè)誤差估計(jì)更前一層的誤差,如此一層一層的反傳下去,就獲得了所有其他各層的
2025-01-05 03:16
【總結(jié)】第四章自組織神經(jīng)網(wǎng)絡(luò)模型內(nèi)容提要?自適應(yīng)諧振理論(ART)?自組織映射神經(jīng)網(wǎng)絡(luò)模型(SOM)?模擬退火算法?應(yīng)用實(shí)例分析第一節(jié)自適應(yīng)諧振理論概述?自適應(yīng)諧振理論(簡(jiǎn)稱(chēng)ART)的目的是為人類(lèi)的心理和認(rèn)知活動(dòng)建立統(tǒng)一的數(shù)學(xué)理論。?自適應(yīng)諧振理論神經(jīng)網(wǎng)絡(luò)模型就是這一理論的核心經(jīng)過(guò)發(fā)展而得
2025-01-04 16:25
【總結(jié)】摘要洪峰流量的預(yù)測(cè)可以基本定型洪水的規(guī)模,可以提前制定合理的防洪預(yù)案,及時(shí)減少人員傷亡和財(cái)產(chǎn)損失,因而預(yù)報(bào)洪峰流量具有重要意義。河道水情預(yù)報(bào)十分復(fù)雜,由于受各種因素的影響表現(xiàn)為非線性動(dòng)力學(xué)過(guò)程,而且因素之間的變化及相互影響關(guān)系也難以確定。鑒于人工神經(jīng)網(wǎng)絡(luò)有很強(qiáng)的處理大規(guī)模非線性動(dòng)力學(xué)系統(tǒng)的能力,本文緊緊圍繞人工神經(jīng)網(wǎng)絡(luò)的數(shù)學(xué)領(lǐng)域的知識(shí),改進(jìn)了BP網(wǎng)絡(luò)洪水預(yù)報(bào)模型。具體工作如下:針對(duì)
2025-06-18 15:58
【總結(jié)】基于MATLAB的BP神經(jīng)網(wǎng)絡(luò)應(yīng)用目錄1緒論 1人工神經(jīng)網(wǎng)絡(luò)的研究背景和意義 1神經(jīng)網(wǎng)絡(luò)的發(fā)展與研究現(xiàn)狀 2神經(jīng)網(wǎng)絡(luò)的研究?jī)?nèi)容和目前存在的問(wèn)題 3神經(jīng)網(wǎng)絡(luò)的應(yīng)用 42神經(jīng)
2025-06-27 18:16
【總結(jié)】1智能控制技術(shù)中國(guó)計(jì)量學(xué)院自動(dòng)化教研室謝敏2智能控制技術(shù)第4章人工神經(jīng)元網(wǎng)絡(luò)模型引言常見(jiàn)神經(jīng)網(wǎng)絡(luò)模型3常見(jiàn)神經(jīng)網(wǎng)絡(luò)模型一、感知器感知器(Perceptron)模型由美國(guó)心理學(xué)家Rosenblatt于1958年提出,其簡(jiǎn)化模型如下圖:常見(jiàn)
2025-01-05 10:17
【總結(jié)】基于模糊神經(jīng)網(wǎng)絡(luò)的煤層瓦斯含量預(yù)測(cè)研究陳闖模糊神經(jīng)網(wǎng)絡(luò)模型研究結(jié)果表明:模糊神經(jīng)網(wǎng)絡(luò)模型不僅能夠較好地解決模糊信息難于定量表達(dá)、學(xué)習(xí)樣本難于確定等問(wèn)題,而且能夠較準(zhǔn)確地提取出煤層瓦斯含量與其各個(gè)影響因素之間的非線性關(guān)系。通過(guò)實(shí)例運(yùn)算驗(yàn)證,其預(yù)測(cè)精度較神經(jīng)網(wǎng)絡(luò)模型提高了4.84%~25.79%,應(yīng)用于煤層瓦
2025-01-05 13:47