【總結(jié)】3探索三角形全等的條件第1課時(shí)【基礎(chǔ)梳理】三角形全等條件的探索【思考】:三角形___全等;三角形___全等.不不:一邊一內(nèi)角、兩內(nèi)角、兩邊時(shí):①三角形___全等;②
2025-06-14 05:05
【總結(jié)】第1課時(shí)3探索三角形全等的條件1.會(huì)用“邊邊邊”判定三角形全等.2.經(jīng)歷探索三角形全等條件的過程,體會(huì)利用操作、歸納獲得數(shù)學(xué)結(jié)論的過程.△ABC與△DEF全等,則有:①AB=DE②BC=EF③CA=FD④∠A=∠D⑤∠B=∠E⑥∠C=∠FABCDEF1、什么叫全等三角
2025-06-20 22:12
2025-06-14 05:41
【總結(jié)】第四章三角形探索三角形全等的條件第1課時(shí)“SSS”判定三角形全等◎知識(shí)梳理1.只給出一個(gè)條件或條件時(shí),不能保證所畫出的兩個(gè)三角形一定全等.要使所畫出兩個(gè)三角形一定全等,至少需要個(gè)條件,但如果只給出三角形的三個(gè)內(nèi)角,還是不能保證得到的三角形一定全等.兩個(gè)三2.給定三角形
2025-06-12 05:43
【總結(jié)】5利用三角形全等測(cè)距離1.會(huì)利用三角形全等測(cè)距離.2.能在解決實(shí)際問題的過程中進(jìn)行有條理的思考和表述.3.體會(huì)數(shù)學(xué)與生活的密切聯(lián)系,能夠利用三角形全等解決生活中的實(shí)際問題.?對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等.?(1)“SSS”:三邊對(duì)應(yīng)相等的兩個(gè)三角形全等.(2)“ASA”:兩角和它們的夾邊對(duì)應(yīng)相
2025-06-20 22:52
【總結(jié)】5利用三角形全等測(cè)距離【基礎(chǔ)梳理】,山腳下有A,B兩點(diǎn),要測(cè)出A,B兩點(diǎn)的距離的具體方案如下:在地上取一個(gè)可以直接到達(dá)A,B點(diǎn)的點(diǎn)O,連接AO并延長(zhǎng)到C,使______,連接BO并延長(zhǎng)到D,使______,再連接___,則AB=___.AO=COBO=DODCDC,是利用了全等三角形_
2025-06-14 04:06
【總結(jié)】4用尺規(guī)作三角形,訓(xùn)練和提高學(xué)生的尺規(guī)作圖的技能,能根據(jù)條件作出三角形.結(jié)果的合理性.,培養(yǎng)學(xué)生的動(dòng)手能力和探索精神.:∠AOB,求作∠A′O′B′,使∠A′O′B′=∠AOB.、作一個(gè)角等于已知角..OBACDO′B′A′D′C′則∠A′
2025-06-13 05:40
【總結(jié)】4用尺規(guī)作三角形【基礎(chǔ)梳理】尺規(guī)作圖的工具是___________.基本作圖:作一條線段等于已知線段、作一個(gè)角等于已知角.直尺和圓規(guī)尺規(guī)作圖類型依據(jù)已知兩邊及其夾角作三角形____已知兩角一邊作三角形____(或AAS)已知三邊作三角形_
【總結(jié)】5利用三角形全等測(cè)距離1.會(huì)利用三角形全等測(cè)距離.2.能在解決實(shí)際問題的過程中進(jìn)行有條理的思考和表述.3.體會(huì)數(shù)學(xué)與生活的密切聯(lián)系,能夠利用三角形全等解決生活中的實(shí)際問題.?對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等.?(1)“SSS”:三邊對(duì)應(yīng)相等的兩個(gè)三角形全等.(2)“ASA”:兩角和它們的夾邊對(duì)應(yīng)相等的
2025-06-12 08:02
2025-06-13 05:42
【總結(jié)】第3課時(shí)3探索三角形全等的條件1.學(xué)會(huì)三角形全等的“邊角邊”的條件.2.經(jīng)歷探索三角形全等條件的過程,體會(huì)利用操作、歸納獲得數(shù)學(xué)結(jié)論的過程.3.掌握三角形全等的“SAS”條件.4.能運(yùn)用“SAS”證明簡(jiǎn)單的三角形全等問題.還記得作一個(gè)角等于已知角的方法嗎?做一做:先任意畫出△ABC,再
【總結(jié)】3探索三角形全等的條件第3課時(shí)【基礎(chǔ)梳理】,有幾種可能的情況?答:________________________________________.,所畫的三角形_____全等;而已知三角形的兩邊及其中一邊的對(duì)角,所畫的三角形_______全等.兩種,即兩邊及夾角和兩邊及其中一邊的對(duì)角一定不一定
2025-06-18 05:36
【總結(jié)】第2課時(shí)3探索三角形全等的條件1.掌握三角形全等的“角邊角”“角角邊”判定方法.2.能運(yùn)用全等三角形的條件,解決簡(jiǎn)單的推理證明問題.??能夠完全重合的兩個(gè)三角形叫做全等三角形.邊邊邊(SSS)一張教學(xué)用的三角形硬紙板不小心被撕壞了,如圖.你能制作一張與原來同樣大小的新教具嗎?能恢復(fù)原來三角形的原貌嗎?