freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

應用回歸分析第章課后習題參考答案(編輯修改稿)

2025-07-04 18:24 本頁面
 

【文章內(nèi)容簡介】 用后退法對數(shù)據(jù)重新做回歸分析,結(jié)果如下:選擇模型二,重新建立的回歸方程為:對新的回歸方程做顯著性檢驗:原假設(shè):F服從自由度為(2,7)的F分布,給定顯著性水平=,查表得,由方差分析表得,F(xiàn)值=,p值=,拒絕原假設(shè).認為在顯著性水平=,x1,x2整體上對y有顯著的線性影響,即回歸方程是顯著的。對每一個回歸系數(shù)做顯著性檢驗:做t檢驗:設(shè)原假設(shè)為,統(tǒng)計量服從自由度為np1=7的t分布,,X1的t值=,拒絕原假設(shè)。故顯著不為零,自變量X1對因變量y的線性效果顯著;同理β2也通過檢驗。同時從回歸系數(shù)顯著性檢驗表可知:X1,X2的p值 ,可認為對x1,x2分別對y都有顯著的影響。(7)求出每一個回歸系數(shù)的置信水平為955D 置信區(qū)間由回歸系數(shù)表可以看到,β1置信水平為95%的置信區(qū)間[,],β2置信水平為95%的置信區(qū)間[,](8)求標準化回歸方程由回歸系數(shù)表(上表)可得,標準化后的回歸方程為:(9)求當x01=75,x02=42,x03=,給定置信水平95%,用SPSS軟件計算精確置信區(qū)間,用手工計算近似預測區(qū)間;由SPSS輸出結(jié)果可知,當時,(見上表),的置信度為95%的精確預測區(qū)間為(,)(見下表),的置信度為95%的近似預測區(qū)間為,手工計算得:(,)。(10)結(jié)合回歸方程對問題做一些簡單分析。答:由回歸方程可知農(nóng)業(yè)總產(chǎn)值固定的時候,工業(yè)總產(chǎn)值每增加1億元,;工業(yè)總產(chǎn)值固定的時候,農(nóng)業(yè)總產(chǎn)值每增加1億元。而居民非商品支出對貨運總量沒有顯著的線性影響。由標準化回歸方程可知:工業(yè)總產(chǎn)值、農(nóng)業(yè)總產(chǎn)值與Y都是正相關(guān)關(guān)系,比較回歸系數(shù)的大小可知農(nóng)業(yè)總產(chǎn)值X2對貨運總量Y的影響程度大一些。第4章 違背基本假設(shè)的情況思考與練習參考答案 試舉例說明產(chǎn)生異方差的原因。答::截面資料下研究居民家庭的儲蓄行為 Yi=b0+b1Xi+εi其中:Yi表示第i個家庭的儲蓄額,Xi表示第i個家庭的可支配收入。由于高收入家庭儲蓄額的差異較大,低收入家庭的儲蓄額則更有規(guī)律性,差異較小,所以εi的方差呈現(xiàn)單調(diào)遞增型變化。 :以某一行業(yè)的企業(yè)為樣本建立企業(yè)生產(chǎn)函數(shù)模型 Yi=Aib1 Kib2 Lib3eεi被解釋變量:產(chǎn)出量Y,解釋變量:資本K、勞動L、技術(shù)A,那么每個企業(yè)所處的外部環(huán)境對產(chǎn)出量的影響被包含在隨機誤差項中。由于每個企業(yè)所處的外部環(huán)境對產(chǎn)出量的影響程度不同,造成了隨機誤差項的異方差性。這時,隨機誤差項ε的方差并不隨某一個解釋變量觀測值的變化而呈規(guī)律性變化,呈現(xiàn)復雜型。 異方差帶來的后果有哪些?答:回歸模型一旦出現(xiàn)異方差性,如果仍采用OLS估計模型參數(shù),會產(chǎn)生下列不良后果:參數(shù)估計量非有效變量的顯著性檢驗失去意義回歸方程的應用效果極不理想總的來說,當模型出現(xiàn)異方差性時,參數(shù)OLS估計值的變異程度增大,從而造成對Y的預測誤差變大,降低預測精度,預測功能失效。 簡述用加權(quán)最小二乘法消除一元線性回歸中異方差性的思想與方法。答:普通最小二乘估計就是尋找參數(shù)的估計值使離差平方和達極小。其中每個平方項的權(quán)數(shù)相同,是普通最小二乘回歸參數(shù)估計方法。在誤差項等方差不相關(guān)的條件下,普通最小二乘估計是回歸參數(shù)的最小方差線性無偏估計。然而在異方差的條件下,平方和中的每一項的地位是不相同的,誤差項的方差大的項,在殘差平方和中的取值就偏大,作用就大,因而普通最小二乘估計的回歸線就被拉向方差大的項,方差大的項的擬合程度就好,而方差小的項的擬合程度就差。由OLS求出的仍然是的無偏估計,但不再是最小方差線性無偏估計。所以就是:對較大的殘差平方賦予較小的權(quán)數(shù),對較小的殘差平方賦予較大的權(quán)數(shù)。這樣對殘差所提供信息的重要程度作一番校正,以提高參數(shù)估計的精度。加權(quán)最小二乘法的方法:。答:運用加權(quán)最小二乘法消除多元線性回歸中異方差性的思想與一元線性回歸的類似。多元線性回歸加權(quán)最小二乘法是在平方和中加入一個適當?shù)臋?quán)數(shù) ,以調(diào)整各項在平方和中的作用,加權(quán)最小二乘的離差平方和為: (2)加權(quán)最小二乘估計就是尋找參數(shù)的估計值使式(2)的離差平方和達極小。所得加權(quán)最小二乘經(jīng)驗回歸方程記做 (3) 多元回歸模型加權(quán)最小二乘法的方法:首先找到權(quán)數(shù),理論上最優(yōu)的權(quán)數(shù)為誤差項方差的倒數(shù),即 (4)誤差項方差大的項接受小的權(quán)數(shù),以降低其在式(2)平方和中的作用。 誤差項方差小的項接受大的權(quán)數(shù),以提高其在平方和中的作用。由(2)式求出的加權(quán)最小二乘估計就是參數(shù)的最小方差線性無偏估計。一個需要解決的問題是誤差項的方差是未知的,因此無法真正按照式(4)選取權(quán)數(shù)。在實際問題中誤差項方差通常與自變量的水平有關(guān)(如誤差項方差隨著自變量的增大而增大),可以利用這種關(guān)系確定權(quán)數(shù)。例如與第j個自變量取值的平方成比例時, 即=k時,這時取權(quán)數(shù)為 (5)更一般的情況是誤差項方差與某個自變量(與|ei|的等級相關(guān)系數(shù)最大的自變量)取值的冪函數(shù)成比例,即=k,其中m是待定的未知參數(shù)。此時權(quán)數(shù)為 (6)這時確定權(quán)數(shù) 的問題轉(zhuǎn)化為確定冪參數(shù)m的問題,可以借助SPSS軟件解決。()式一元加權(quán)最小二乘回歸系數(shù)估計公式。證明:由得:()式多元加權(quán)最小二乘回歸系數(shù)估計公式。證明:對于多元線性回歸模型 (1) ,即存在異方差。設(shè),用左乘(1)式兩邊,得到一個新的的模型:,即。因為,故新的模型具有同方差性,故可以用廣義最小二乘法估計該模型,得原式得證。 有同學認為當數(shù)據(jù)存在異方差時,加權(quán)最小二乘回歸方程與普通最小二乘回歸方程之間必然有很大的差異,異方差越嚴重,兩者之間的差異就越大。你是否同意這位同學的觀點?說明原因。答:不同意。當回歸模型存在異方差時,加權(quán)最小二乘估計(WLS)只是普通最小二乘估計(OLS)的改進,這種改進可能是細微的,不能理解為WLS一定會得到與OLS截然不同的方程來,或者大幅度的改進。實際上可以構(gòu)造這樣的數(shù)據(jù),回歸模型存在很強的異方差,但WLS 與OLS的結(jié)果一樣。加權(quán)最小二乘法不會消除異方差,只是消除異方差的不良影響,從而對模型進行一點改進。 ,用公式計算出加權(quán)變換殘差,繪制加權(quán)變換殘差圖,根據(jù)繪制出的圖形說明加權(quán)最小二乘估計的效果。解:用公式計算出加權(quán)變換殘差,分別繪制加權(quán)最小二乘估計后的殘差圖和加權(quán)變換殘差圖(見下圖)。根據(jù)繪制出的兩個圖形可以發(fā)現(xiàn)加權(quán)最小二乘估計沒有消除異方差,只是對原OLS的殘差有所改善,而經(jīng)過加權(quán)變換后的殘差不存在異方差。 參見參考文獻[2],(P138)是用電高峰每小時用電量y與每月總用電量x的數(shù)據(jù)。(1)用普通最小二乘法建立y與x的回歸方程,并畫出殘差散點圖。解:SPSS輸出結(jié)果如下:由上表可得回歸方程為:殘差圖為:(2)診斷該問題是否存在異方差;解:a由殘差散點圖可以明顯
點擊復制文檔內(nèi)容
教學教案相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1