【文章內(nèi)容簡介】
個拿蘋果最多的抽屜,從它里面至少拿出了幾個蘋果?(答案:17247。8=2……1,2+1=3,所以答案為3) (6)從幾個抽屜中(填最大數(shù))拿出25個蘋果,才能保證一定能找到一個抽屜,從它當中至少拿了7個蘋果?(答案:25247?!酰?……□,可見除數(shù)為4,余數(shù)為1,抽屜數(shù)為4,所以答案為4個) 上面(4)、(5)、(6)題的規(guī)律是:物體數(shù)比抽屜數(shù)的幾倍還多幾的情況,可用“蘋果數(shù)”除以“抽屜數(shù)”,若余數(shù)不為零,則“答案”為商加1;若余數(shù)為零,則“答案”為商。其中第(6)題是已知“蘋果數(shù)”和“答案”來求“抽屜數(shù)”。 抽屜問題的用處很廣,如果能靈活運用,可以解決一些看上去相當復雜、覺得無從下手,實際上卻是相當有趣的數(shù)學問題。 例1:某班共有13個同學,那么至少有幾人是同月出生?( ) A. 13 B. 12 C. 6 D. 2 解1:找準題中兩個量,一個是人數(shù),一個是月份例2:某班參加一次數(shù)學競賽,試卷滿分是30分。為保證有2人的得分一樣,該班至少得有幾人參賽?( ) A. 30 B. 31 C. 32 D. 33解2:滿分是30分,則一個人可能的得分有31種情況(從0分到30分),所以“蘋果”數(shù)應(yīng)該是31+1=32?!疽阎O果和抽屜,用“抽屜原理2”】 例3. 在某校數(shù)學樂園中,五年級學生共有400人,年齡最大的與年齡最小的相差不到1歲,我們不用去查看學生的出生日期,就可斷定在這400個學生中至少有兩個是同年同月同日出生的,你知道為什么嗎? 解3:因為年齡最大的與年齡最小的相差不到1歲,所以這400名學生出生的日期總數(shù)不會超過366天,把400名學生看作400個蘋果,366天看作是366個抽屜,(若兩名學生是同一天出生的,則讓他們進入同一個抽屜,否則進入不同的抽屜)由“抽屜原則2”知“無論怎么放這400個蘋果,一定能找到一個抽屜,它里面至少有2(400247。366=1……1,1+1=2)個蘋果”。即:一定能找到2個學生,他們是同年同月同日出生的。 例4:有紅色、白色、黑色的筷子各10根混放在一起。如果讓你閉上眼睛去摸,(1)你至少要摸出幾根才敢保證至少有兩根筷子是同色的?為什么?(2)至少拿幾根,才能保證有兩雙同色的筷子,為什么? 解4:把3種顏色的筷子當作3個抽屜。則:(1)根據(jù)“抽屜原理1”,至少拿4根筷子,才能保證有2根同色筷子;(2)從最特殊的情況想起,假定3種顏色的筷子各拿了3根,也就是在3個“抽屜”里各拿了3根筷子,不管在哪個“抽屜”里再拿1根筷子,就有4根筷子是同色的,所以一次至少應(yīng)拿出33+1=10(根)筷子,就能保證有4根筷子同色。 例5. 證明在任意的37人中,至少有4人的屬相相同。 解5:將37人看作37個蘋果,12個屬相看作是12個抽屜,由“抽屜原理2”知,“無論