freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

電子信息科學(xué)與技術(shù)畢業(yè)論文-數(shù)據(jù)流中概念漂移檢測與分類方法研究(編輯修改稿)

2025-07-13 00:04 本頁面
 

【文章內(nèi)容簡介】 習(xí)研究的熱點(diǎn)之一,然而其研究遠(yuǎn)還沒有成熟,還存在著眾多挑戰(zhàn),期待著學(xué)術(shù)界能有更大的突破。 15 參考文獻(xiàn) [1]Mitchell T M. Machine learning[M]. New York City: McGrawHill, 1997. [2]Schlimmer J and Granger R. Incremental learning from noisy data[J]. Machine Learning, 1986, 1(3): 317354. [3]Grossberg S. Nonlinear neural works: principles, mechanisms and architecture[J]. Neural Network, 1988, 1(1): 1761. [4]Kuncheva L I. Classifier ensembles for changing environments[C]//Proceedings of the Fifth Workshop on Multiple Classifier Systems. Cagliari, Italy, 2021: 115. [5]Tsymbal A. The problem of concept drift: definitions and related work. Technical report, Department of Computer Science Trinity College , 2021. [6]王濤 , 李舟軍 , 顏躍進(jìn) , 等 . 數(shù)據(jù)流挖掘分類技術(shù)綜述 [J]. 計(jì)算機(jī)研究與發(fā)展 , 2021, 44(11): 18091815. [7]Zliobaite I. Learning under concept drift: an overview[EB/OL].[2021].. [8]Hoens T R, Polikar R, and Chawla N V. Learning from streaming data with concept drift and imbalance: an overview[J]. Progress in Artificial Intelligence, 2021: 113. [9]Gama J. A survey on learning from data streams: current and future trends[J]. Progress in Artificial Intelligence, 2021: 111. [10]Overpeck J T, Meehl G A, Bony S, etal. Climate data challenges in the 21st century[J]. SCIENCE, 2021, 331(6018):700702. [11]Street W N, Kim Y S. A streaming ensemble algorithm (SEA) for largescale classification[C]//Proceedings of the seventh International Conference on Knowledge Discovery and Data Mining. San Francisco, USA, 2021: 377382. [12]Angluin D. Queries and concept learning[J]. Machine Learning, 1988, 2(4): 319342. 16 [13]Domingos P, Hulten G. Mining highspeed data stream[C]//Proceedings of the sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Boston, MA, USA, 2021: 7180. [14]Hulten G, Spencer L, and Domingos P. Mining timechanging data streams[C]//Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, California, USA, 2021: 97106. [15]Widmer G and Kubat M. Effective learning in dynamic environments by explicit context tracking[C]// Proceedings of the Sixth European Conference on Machine Learning. Vienna, Austria, 1993: 69101. [16]Kelly M, Hand D, and Adams N. The impact of changing populations on classifier performance[C]// Proceedings of the Fifth International Conference on Knowledge Discovery and Data Mining. San Diego, CA , USA , 1999: 367371. [17]Narasimhamurthy A and Kuncheva L I. A framework for generating data to simulate changing environments [C]// Proceedings of the 25th IASTED International MultiConference: Artificial Intelligence and Applications. Innsbruck, Austria, 2021: 384389. [18]Minku L L, White A P, and Yao X. The impact of diversity on online ensemble learning in the presence of concept drift[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 22(5): 730742. [19]Elwell R and Polikar R. Incremental learning of concept drift in nonstationary environments[J]. IEEE Transactions on Neural Networks, 2021, 22(10): 15171531. [20]Masud M, Gao J, and Khan L, et al. Integrating novel class detection with classification for conceptdrifting data streams[C]// Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases. Bled, Slovenia, 2021: 7994. [21]MorenoTorres J G, Raeder T, and AlaizRodriguez R. A unifying view on dataset shift in classification[J]. Pattern Recognition, 2021, 45: 521530. 17 [22]Kilander F, Jansson C. COBBIT—A control procedure for COBWEB in the presence of concept drift[C]// Proceedings of the sixth European Conference on Machine Learning. Helsinki, Finland, 1993: 244261. [23]Black M, Hickey R J. Maintaining the performance of a learned classifier under concept drift [J]. Intelligent Data Analysis , 1999 , 3(6) : 453 – 474. [24]Kun A, Petsche T, and Rivest R L. Learning timevarying concepts[C]//Proceedings of the Conference Neural Information Processing Systems. Denver, Colorado, USA, 1990: 183189. [25]Helmbold D P, Long P M. Tracking drifting concepts by minimizing disagreements[J]. Machine Learning, 1994, 14(1): 2745. [26]Barve R D, Long P M. On the plexity of learning from drifting distributions[C]//Proceedings of the Ninth Annual Conference on Computational Learning Theory. Desenzano sul Garda, Italy, 1996, 122130. [27]Dietterich T, Widmer G, and Kubat M. Special issue on context sensitivity and concept drift. Machine Learning, 1998, 32(2): 83201. [28]Wang H, Fan W, Yu P S, etal. Mining conceptdrifting data streams using ensemble classifiers[C]// Proceedings of the ninth International Conference on Knowledge Discovery and Data Mining. Washington DC, USA, 2021: 226235. [29]Kolter J Z and Maloof M A. Dynamic weighted majority: A new ensemble method for tracking concept drift [C]// Proceedings of the Third IEEE International Conference on Data Mining. Florida, USA, 2021: 123130. [30]Kolter J Z, Maloof M A. Using additive expert ensembles to cope with concept drift[C] //Proceedings of the 22nd International Conference on Machine learning. Bonn, Germany, 2021: 449456. [31]Bifet A, Holmes G, and Pfahringer B, et al. New ensemble methods for evolving data streams[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, French, 2021: 139148. [32]Klinkenberg R. Using labeled and unlabeled data to learning drifting concepts[C]//Proceedings of the Workshop notes of the IJCAI01 Workshop on Learning from Temporal and Spatial Data. Menlo Park, CA, USA , 2021: 1624. 18 [33]Klinkenberg R. Detection concept drift with support vector machines[C]//Proceedings of the Seventeenth International Conference on Machine learning. Stanford, California, USA , 2021: 487494. [34]Lanquillon C. Information filtering in changing domains[C]// Pr
點(diǎn)擊復(fù)制文檔內(nèi)容
畢業(yè)設(shè)計(jì)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1