freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

遺傳算法原理與應最初級(編輯修改稿)

2025-06-20 22:30 本頁面
 

【文章內(nèi)容簡介】 本數(shù)就越少。在遺傳操作中,即使階數(shù)相同的模式,也會有不同的性質(zhì),而模式的定義距就反映了這種性質(zhì)的差異。 模式定理 模式定理:具有低階、短定義距以及平均適應度高于種群平均適應度的模式在子代中呈指數(shù)增長。 模式定理保證了較優(yōu)的模式(遺傳算法的較優(yōu)解)的數(shù)目呈指數(shù)增長,為解釋遺傳算法機理提供了數(shù)學基礎。 模式定理 從模式定理可看出,有高平均適應度、短定義距、低階的模式,在連續(xù)的后代里獲得至少以指數(shù)增長的串數(shù)目,這主要是因為選擇使最好的模式有更多的復制,交叉算子不容易破壞高頻率出現(xiàn)的、短定義長的模式,而一般突變概率又相當小,因而它對這些重要的模式幾乎沒有影響。 積木塊假設 積木塊假設:遺傳算法通過短定義距、低階以及高平均適應度的模式(積木塊),在遺傳操作下相互結(jié)合,最終接近全局最優(yōu)解。 模式定理保證了較優(yōu)模式的樣本數(shù)呈指數(shù)增長,從而使遺傳算法找到全局最優(yōu)解的可能性存在;而積木塊假設則指出了在遺傳算子的作用下,能生成全局最優(yōu)解。 遺傳算法的收斂性分析 遺傳算法要實現(xiàn)全局收斂,首先要求任意初始種群經(jīng)有限步都能到達全局最優(yōu)解,其次算法必須由保優(yōu)操作來防止最優(yōu)解的遺失。與算法收斂性有關(guān)的因素主要包括種群規(guī)模、選擇操作、交叉概率和變異概率。 種群規(guī)模對 收斂性的影響 通常,種群太小則不能提供足夠的采樣點,以致算法性能很差;種群太大,盡管可以增加優(yōu)化信息,阻止早熟收斂的發(fā)生,但無疑會增加計算量,造成收斂時間太長,表現(xiàn)為收斂速度緩慢。 選擇操作對 收斂性的影響 選擇操作使高適應度個體能夠以更大的概率生存,從而提高了遺傳算法的全局收斂性。如果在算法中采用最優(yōu)保存策略,即將父代群體中最佳個體保留下來,不參加交叉和變異操作,使之直接進入下一代,最終可使遺傳算法以概率 1收斂于全局最優(yōu)解。 交叉概率對 收斂性的影響 交叉操作用于個體對,產(chǎn)生新的個體,實質(zhì)上是在解空間中進行有效搜索。交叉概率太大時,種群中個體更新很快,會造成高適應度值的個體很快被破壞掉;概率太小時,交叉操作很少進行,從而會使搜索停滯不前,造成算法的不收斂。 變異概率對 收斂性的影響 變異操作是對種群模式的擾動,有利于增加種群的多樣性 。但是,變異概率太小則很難產(chǎn)生新模式,變異概率太大則會使遺傳算法成為隨機搜索算法。 遺傳算法的本質(zhì) 遺傳算法本質(zhì)上是對染色體模式所進行的一系列運算,即通過選擇算子將當前種群中的優(yōu)良模式遺傳到下一代種群中,利用交叉算子進行模式重組,利用變異算子進行模式突變。通過這些遺傳操作,模式逐步向較好的方向進化,最終得到問題的最優(yōu)解。 遺傳算法的改進 遺傳欺騙問題:在遺傳算法進化過程中,有時會產(chǎn)生一些超常的個體,這些個體因競爭力太突出而控制了選擇運算過程,從而影響算法的全局優(yōu)化性能,導致算法獲得某個局部最優(yōu)解。 遺傳算法的改進途徑 ( 1) 對編碼方式的改進 ( 2) 對遺傳算子 的改進 ( 3) 對控制參數(shù)的改進 ( 4) 對執(zhí)行策略的改進 對編碼方式的改進 二進制編碼優(yōu)點在于編碼 、 解碼操作簡單 , 交叉 、 變異等操作便于實現(xiàn) , 缺點在于精度要求較高時 , 個體編碼串較長 ,使算法的搜索空間急劇擴大 , 遺傳算法的性能降低 。 格雷編碼克服了二進制編碼的不連續(xù)問題 , 浮點數(shù)編碼改善了遺傳算法的計算復雜性 。 對遺傳算子 的改進 排序選擇 均勻交叉 逆序變異 ( 1) 對群體中的所有個體按其適應度大小進行降序排序; ( 2) 根據(jù)具體求解問題,設計一個概率分配表,將各個概率值按上述排列次序分配給各個個體; ( 3) 以各個個體所
點擊復制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1