【總結(jié)】金融數(shù)據(jù)挖掘和商業(yè)數(shù)據(jù)挖掘建構(gòu)信用卡評(píng)分模型之商業(yè)智慧流程鄭宇庭謝邦昌程兆慶臺(tái)灣政治大學(xué)資料採(cǎi)礦中心2021/6/162報(bào)告大綱?研究目的?分析工具?建模流程?結(jié)論與建議?Q&A2021/6/163研究目的?有效地篩選出償債能力不佳
2025-05-10 03:30
【總結(jié)】2020-11-6數(shù)據(jù)挖掘:概念和技術(shù)1數(shù)據(jù)挖掘:概念和技術(shù)—Chapter6—?張曉輝復(fù)旦大學(xué)(國(guó)際)數(shù)據(jù)庫(kù)研究中心2020-11-6數(shù)據(jù)挖掘:概念和技術(shù)2第6章:從大數(shù)據(jù)庫(kù)中挖掘關(guān)聯(lián)規(guī)則?關(guān)聯(lián)規(guī)則挖掘?從交易數(shù)據(jù)庫(kù)中挖掘一維的布爾形關(guān)聯(lián)規(guī)則?從交易數(shù)據(jù)庫(kù)中
2025-08-22 09:03
【總結(jié)】數(shù)據(jù)挖掘聚類問(wèn)題(PlantsDataSet)實(shí)驗(yàn)報(bào)告1.數(shù)據(jù)源描述本實(shí)驗(yàn)用到的是關(guān)于植物信息的數(shù)據(jù)集,其中包含了每一種植物(種類和科屬)以及它們生長(zhǎng)的地區(qū)。數(shù)據(jù)集中總共有68個(gè)地區(qū),主要分布在美國(guó)和加拿大。一條數(shù)據(jù)(對(duì)應(yīng)于文件中的一行)包含一種植物(或者某一科屬)及其在上述68個(gè)地區(qū)中的分布情況??梢赃@樣理解,該數(shù)據(jù)集中每一條數(shù)據(jù)包含兩部分內(nèi)容,如下圖所示。植物名稱(
2025-08-19 14:21
【總結(jié)】決策樹(shù)算法及應(yīng)用拓展?內(nèi)容簡(jiǎn)介:?概述?預(yù)備知識(shí)?決策樹(shù)生成(BuildingDecisionTree)?決策樹(shù)剪枝(PruningDecisionTree)?捕捉變化數(shù)據(jù)的挖掘方法?小結(jié)概述(一)?傳統(tǒng)挖掘方法的局限性?只重視從數(shù)據(jù)庫(kù)中提取規(guī)則,忽視了庫(kù)中數(shù)據(jù)的變化?挖掘
2025-03-09 11:31
【總結(jié)】數(shù)據(jù)挖掘原語(yǔ)、語(yǔ)言和系統(tǒng)結(jié)構(gòu)為什么要數(shù)據(jù)挖掘原語(yǔ)和語(yǔ)言??一個(gè)完全自動(dòng)(不需要人為干預(yù)或指導(dǎo))的數(shù)據(jù)挖掘機(jī)器只可能是“一只瘋了的怪獸”。?會(huì)產(chǎn)生大量模式(重新把知識(shí)淹沒(méi))?會(huì)涵蓋所有數(shù)據(jù),使得挖掘效率低下?大部分有價(jià)值的模式集可能被忽略?挖掘出的模式可能難以理解,缺乏有效性、新穎性和實(shí)用性——令人不感興趣。?沒(méi)有
2025-05-15 11:33
【總結(jié)】第六章在大型數(shù)據(jù)庫(kù)中挖掘關(guān)聯(lián)規(guī)則報(bào)告人:張榮祖2020/11/28基于約束的挖掘?使用約束的必要性?在數(shù)據(jù)挖掘中常使用的幾種約束:?知識(shí)類型約束:指定要挖掘的知識(shí)類型如關(guān)聯(lián)規(guī)則?數(shù)據(jù)約束:指定與任務(wù)相關(guān)的數(shù)據(jù)集?Findproductpairssoldtoge
【總結(jié)】數(shù)據(jù)挖掘?qū)д摳=ㄡt(yī)科大學(xué)鄭偉成支持向量機(jī)?支持向量機(jī)(SupportVectorMachine,SVM)是CorinnaCortes和Vapnik等亍1995年首先提出的,它在解決小樣本、非線性及高維模式識(shí)別中表現(xiàn)出許多特有的優(yōu)勢(shì),幵能夠推廣應(yīng)用到函數(shù)擬合等其他機(jī)器學(xué)習(xí)問(wèn)題中。?在機(jī)器學(xué)習(xí)中,支持向量機(jī)
2025-07-19 17:51
【總結(jié)】數(shù)據(jù)挖掘K-均值算法實(shí)現(xiàn)畢業(yè)設(shè)計(jì)目錄中文摘要、關(guān)鍵字 11緒論 3本文研究的背景和意義 3聚類分析國(guó)內(nèi)外研究現(xiàn)狀 5本文所做的主要工作 72聚類算法的分析與研究 8數(shù)據(jù)挖掘簡(jiǎn)介 8聚類的基本知識(shí) 8類的定義及表示 9聚類的相似度量方法 9聚類間的距離測(cè)度函數(shù) 11聚類
2025-06-17 16:52
【總結(jié)】④內(nèi)部公開(kāi)請(qǐng)勿外傳版權(quán)所有?1993-2022金蝶軟件(中國(guó))有限公司④內(nèi)部公開(kāi)請(qǐng)勿外傳大數(shù)據(jù)時(shí)代企業(yè)內(nèi)部小數(shù)據(jù)挖掘杭州蝶舞軟件有限公司④內(nèi)部公開(kāi)請(qǐng)勿外傳大數(shù)據(jù)時(shí)代的需求如何提升ERP應(yīng)用效果K/3運(yùn)營(yíng)魔方特色介紹目錄④內(nèi)部公開(kāi)請(qǐng)勿外傳全球每秒鐘發(fā)送百
2025-05-12 05:04
【總結(jié)】1數(shù)據(jù)挖掘原理與SPSSClementine應(yīng)用寶典元昌安主編鄧松李文敬劉海濤編著電子工業(yè)出版社2?概念/類描述?關(guān)聯(lián)模式?分類?聚類分析?預(yù)測(cè)?時(shí)間序列?偏差檢測(cè)
2025-05-15 11:38
【總結(jié)】姜素芳第7章數(shù)據(jù)倉(cāng)庫(kù)和數(shù)據(jù)挖掘本章學(xué)習(xí)目標(biāo)了解數(shù)據(jù)倉(cāng)庫(kù)的概念及特點(diǎn)了解數(shù)據(jù)挖掘的應(yīng)用和功能熟悉數(shù)據(jù)挖掘的幾種主要技術(shù)姜素芳第7章數(shù)據(jù)倉(cāng)庫(kù)和數(shù)據(jù)挖掘數(shù)據(jù)倉(cāng)庫(kù)概述數(shù)據(jù)挖掘概述數(shù)據(jù)挖掘的主要技術(shù)數(shù)據(jù)倉(cāng)庫(kù)和挖掘?qū)RM的影響姜素芳第7章數(shù)據(jù)倉(cāng)庫(kù)和數(shù)據(jù)挖掘
2025-05-15 00:05
【總結(jié)】引言?數(shù)據(jù)是知識(shí)的源泉。但是,擁有大量的數(shù)據(jù)與擁有許多有用的知識(shí)完全是兩回事。過(guò)去幾年中,從數(shù)據(jù)庫(kù)中發(fā)現(xiàn)知識(shí)這一領(lǐng)域發(fā)展的很快。廣闊的市場(chǎng)和研究利益促使這一領(lǐng)域的飛速發(fā)展。計(jì)算機(jī)技術(shù)和數(shù)據(jù)收集技術(shù)的進(jìn)步使人們可以從更加廣泛的范圍和幾年前不可想象的速度收集和存儲(chǔ)信息。收集數(shù)據(jù)是為了得到信息,然而大量的數(shù)據(jù)本身并不意味信息。盡管現(xiàn)代的數(shù)據(jù)庫(kù)技術(shù)使我們很容易
2025-05-15 00:04
【總結(jié)】第3章數(shù)據(jù)倉(cāng)庫(kù)和數(shù)據(jù)挖掘的OLAP技術(shù)本章要點(diǎn)?數(shù)據(jù)倉(cāng)庫(kù)的基本概念?多維數(shù)據(jù)模型?數(shù)據(jù)倉(cāng)庫(kù)的系統(tǒng)結(jié)構(gòu)?數(shù)據(jù)倉(cāng)庫(kù)實(shí)現(xiàn)?數(shù)據(jù)立方體技術(shù)的近一步發(fā)展?從數(shù)據(jù)倉(cāng)庫(kù)到數(shù)據(jù)挖掘數(shù)據(jù)倉(cāng)庫(kù)的發(fā)展?自從NCR公司為WalMart建立了第一個(gè)數(shù)據(jù)倉(cāng)庫(kù)。?1996年,加拿大的IDC公司調(diào)查了62
2025-05-09 03:06
【總結(jié)】楊大川數(shù)據(jù)分析與數(shù)據(jù)挖掘?qū)崙?zhàn)案例講師簡(jiǎn)介l楊大川-邁思奇科技有限公司CTO?微軟(最有價(jià)值專家)?曾任美國(guó)硅谷Annuncio公司首席工程師?招商迪辰產(chǎn)品研發(fā)部總經(jīng)理?現(xiàn)兼任中科院客座教授lMinesage:邁思奇科技有限公司?微軟數(shù)據(jù)分析/挖掘領(lǐng)域合作伙伴
2025-02-21 14:37
【總結(jié)】DataMining:Concept,technicalandmethodNCRDataMiningTeam2022/06議程l數(shù)據(jù)挖掘概述?數(shù)據(jù)挖掘業(yè)務(wù)案例?數(shù)據(jù)挖掘概念與常用技術(shù)l數(shù)據(jù)挖掘軟件與架構(gòu)?數(shù)據(jù)挖掘常見(jiàn)軟件?TeredataWarehouseMiner架構(gòu)特點(diǎn)l數(shù)據(jù)挖掘?qū)嵤┡c應(yīng)
2025-02-21 23:27