freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

橋梁畢業(yè)設(shè)計(jì)外文翻譯---碳纖維復(fù)合材料修復(fù)混凝土橋梁結(jié)構(gòu)的詳述及應(yīng)用-橋梁設(shè)計(jì)(編輯修改稿)

2025-06-25 13:38 本頁面
 

【文章內(nèi)容簡(jiǎn)介】 sticity (ultrasonic pulse velocity), Possion’s ratio (ultrasonic pulse velocity), thickness of concrete slab or wall (ultrasonic pulse velocity), CFRP debonding (hammer test/infrared thermographic technique), and stain on concrete surface (visual inspection). Quality and durability test methods may include。 rebar corrosion rate – field test, chloride profile field test, rebar corrosion analysis, rebar resistivity test, alkalisilica reactivity field test, concrete alkalinity test (carbonation field test), concrete permeability (field test for permeability). 4 Nondestructive Evaluation of Deteriorated Concrete Bridge Piers The process of evaluating the structural condition of an existing concrete bridge consists of collecting information, . drawings and construction amp。 inspection records, analyzing NDT data, and structural analysis of the bridge. The evaluation process can be summarized as follows: (1) Planning for the assessment, (2) Preliminary assessment, which involves examination of available documents, site inspection, materials assessment, and preliminary analysis, (3) Preliminary evaluation, this involves: examination phase, and judgmental phase, and finally (4) the costimpact study. If the information is insufficient to conduct evaluation to a specific required level, then a detailed evaluation may be conducted following similar steps for the abovementioned preliminary assessment, but indepth assessment. Successful analytical evaluation of an existing deteriorated concrete bridge should consider the actual condition of the bridge and level of deterioration of various elements. Factors, . actual concrete strength, level of damage/deterioration, actual size of corroded rebars, loss of bond between steel and concrete, etc. should be modeled into a detailed analysis. If such detailed analysis is difficult to acplish within a reasonable period of time, then 5 evaluation by field load testing of the actual bridge in question may be required. 5 Bridge Rehabilitation with CFRP Composites Application of CFRP posite materials is being increasingly attractive to extend the service life of existing concrete bridges. The technology of strengthening existing bridges with externally bonded CFRP posites was developed primarily in Japan (FRP sheets), and Europe (laminates). The use of these materials for strengthening existing concrete bridges started in the 1980s, first as a substitute to bonded steel plates, and then as a substitute for steel jackets for seismic retrofit of bridge columns. CFRP Composite materials are posed of fiber reinforcement bonded together with a resin matrix. The fibers provide the posite with its unique structural properties. The resin matrix supports the fibers, protect them, and transfer the applied load to the fibers through shearing stresses. Most of the mercially available CFRP systems in the construction market consist of uniaxial fibers embedded in a resin matrix, typically epoxy. Carbon fibers
點(diǎn)擊復(fù)制文檔內(nèi)容
畢業(yè)設(shè)計(jì)相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1