freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

單片機外文翻譯7-單片機(編輯修改稿)

2025-02-24 07:57 本頁面
 

【文章內(nèi)容簡介】 ures temperature through the use of an on–board proprietary temperature measurement technique. A block diagram of the temperature measurement circuitry is shown in Figure 4. The DS1820 measures temperature by counting the number of clock cycles that an oscillator with a low temperature coefficient goes through during a gate period determined by a high temperature coefficient oscillator. The counter is preset with a base count that corresponds to –55176。C. If the counter reaches zero before the gate period is over, the temperature register, which is also preset to the –55176。C value, is incremented, indicating that the temperature is higher than –55176。C. At the same time, the counter is then preset with a value determined by the slope accumulator circuitry. This circuitry is needed to pensate for the parabolic behavior of the oscillators over temperature. The counter is then clocked again until it reaches zero. If the gate period is still not finished, then this process repeats. The slope accumulator is used to pensate for the non–linear behavior of the oscillators over temperature, yielding a high resolution temperature measurement. This is done by changing the number of counts necessary for the counter to go through for each incremental degree in temperature. To obtain the desired resolution, therefore, both the value of the counter and the number of counts per degree C (the value of the slope accumulator) at a given temperature must be known. Internally, this calculation is done inside the DS1820 to provide 176。C resolution. The temperature reading is provided in a 16–bit, sign–extended two’s plement reading. Table 1 describes the exact relationship of output data to measured temperature. The data is transmitted serially over the 1–Wire interface. The DS1820 can measure temperature over the range of –55176。C to +125176。C in 176。C increments. For Fahrenheit usage, a lookup table or conversion factor must be used. Note that temperature is represented in the DS1820 in terms of a 1/2176。C LSB, yielding the following 9–bit format: The most significant (sign) bit is duplicated into all of the bits in the upper MSB of the two–byte temperature register in memory. This “sign–extension” yields the 16–bit temperature readings as shown in Table 1. Higher resolutions may be obtained by the following procedure. First, read the temperature, and truncate the 176。C bit (the LSB) from the read value. This value is TEMP_READ. The value left in the counter may then be read. This value is the count remaining (COUNT_REMAIN) after the gate period has ceased. The last value needed is the number of counts per degree C (COUNT_PER_C) at that temperature. The actual temperature may be then be calculated by the user using the following: 1–WIRE BUS SYSTEM The 1–Wire bus is a system which has a single bus master and one or more slaves. The DS1820 behaves as a slave. The discussion of this bus system is broken down into three topics: hardware configuration, transaction sequence, and 1–Wire signaling (signal types and timing). HARDWARE CONFIGURATION The 1–Wire bus has only a single line by definition。 it is important that each device on the bus be able to drive it at the appropriate time. To facilitate this, each device attached to the 1–Wire bus must have open drain or 3–state outputs. The 1–Wire port of the DS1820 (I/Opin) is open drain with an internal circuit equivalent to that shown in Figure 9. A multidrop bus consists of a 1–Wire bus with multiple slaves attached.
點擊復制文檔內(nèi)容
教學課件相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1