freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

備戰(zhàn)中考數(shù)學備考之二次函數(shù)壓軸突破訓練∶培優(yōu)-易錯-難題篇含答案解析(1)(編輯修改稿)

2025-03-31 22:56 本頁面
 

【文章內(nèi)容簡介】 N=BE=x,∴S△ECF= (BCBE)FN,即y= x(4x),∴y= x2+2x(0<x<4),②,當x=2,y最大值=2.【點睛】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),二次函數(shù)的最值問題,綜合性較強,正確添加輔助線、熟練掌握相關(guān)知識是解題的關(guān)鍵.7.如圖,直線y=﹣x+4與x軸交于點B,與y軸交于點C,拋物線y=﹣x2+bx+c經(jīng)過B,C兩點,與x軸另一交點為A.點P以每秒個單位長度的速度在線段BC上由點B向點C運動(點P不與點B和點C重合),設(shè)運動時間為t秒,過點P作x軸垂線交x軸于點E,交拋物線于點M.(1)求拋物線的解析式;(2)如圖①,過點P作y軸垂線交y軸于點N,連接MN交BC于點Q,當時,求t的值;(3)如圖②,連接AM交BC于點D,當△PDM是等腰三角形時,直接寫出t的值.【答案】(1)y=﹣x2+3x+4;(2)t的值為;(3)當△PDM是等腰三角形時,t=1或t=﹣1.【解析】【分析】(1)求直線y=x+4與x軸交點B,與y軸交點C,用待定系數(shù)法即求得拋物線解析式.(2)根據(jù)點B、C坐標求得∠OBC=45176。,又PE⊥x軸于點E,得到△PEB是等腰直角三角形,由t求得BE=PE=t,即可用t表示各線段,得到點M的橫坐標,進而用m表示點M縱坐標,求得MP的長.根據(jù)MP∥CN可證,故有,把用t表示的MP、NC代入即得到關(guān)于t的方程,求解即得到t的值.(3)因為不確定等腰△PDM的底和腰,故需分3種情況討論:①若MD=MP,則∠MDP=∠MPD=45176。,故有∠DMP=90176。,不合題意;②若DM=DP,則∠DMP=∠MPD=45176。,進而得AE=ME,把含t的式子代入并解方程即可;③若MP=DP,則∠PMD=∠PDM,由對頂角相等和兩直線平行內(nèi)錯角相等可得∠CFD=∠PMD=∠PDM=∠CDF進而得CF=CD.用t表示M的坐標,求直線AM解析式,求得AM與y軸交點F的坐標,即能用t表示CF的長.把直線AM與直線BC解析式聯(lián)立方程組,解得x的值即為點D橫坐標.過D作y軸垂線段DG,得等腰直角△CDG,用DG即點D橫坐標,進而可用t表示CD的長.把含t的式子代入CF=CD,解方程即得到t的值.【詳解】(1)直線y=﹣x+4中,當x=0時,y=4∴C(0,4)當y=﹣x+4=0時,解得:x=4∴B(4,0)∵拋物線y=﹣x2+bx+c經(jīng)過B,C兩點∴ 解得:∴拋物線解析式為y=﹣x2+3x+4(2)∵B(4,0),C(0,4),∠BOC=90176?!郞B=OC∴∠OBC=∠OCB=45176?!進E⊥x軸于點E,PB=t∴∠BEP=90176?!郣t△BEP中, ∴,∴ ∵點M在拋物線上∴,∴ ,∵PN⊥y軸于點N∴∠PNO=∠NOE=∠PEO=90176?!嗨倪呅蜲NPE是矩形∴ON=PE=t∴NC=OC﹣ON=4﹣t∵MP∥CN∴△MPQ∽△NCQ∴ ∴ 解得:(點P不與點C重合,故舍去)∴t的值為 (3)∵∠PEB=90176。,BE=PE∴∠BPE=∠PBE=45176?!唷螹PD=∠BPE=45176。①若MD=MP,則∠MDP=∠MPD=45176?!唷螪MP=90176。,即DM∥x軸,與題意矛盾②若DM=DP,則∠DMP=∠MPD=45176?!摺螦EM=90176。∴AE=ME∵y=﹣x2+3x+4=0時,解得:x1=﹣1,x2=4∴A(﹣1,0)∵由(2)得,xM=4﹣t,ME=y(tǒng)M=﹣t2+5t∴AE=4﹣t﹣(﹣1)=5﹣t∴5﹣t=﹣t2+5t解得:t1=1,t2=5(0<t<4,舍去)③若MP=DP,則∠PMD=∠PDM如圖,記AM與y軸交點為F,過點D作DG⊥y軸于點G∴∠CFD=∠PMD=∠PDM=∠CDF∴CF=CD∵A(﹣1,0),M(4﹣t,﹣t2+5t),設(shè)直線AM解析式為y=ax+m∴ 解得: ,∴直線AM:∴F(0,t)∴CF=OC﹣OF=4﹣t∵tx+t=﹣x+4,解得:,∴,∵∠CGD=90176。,∠DCG=45176?!?,∴ 解得: 綜上所述,當△PDM是等腰三角形時,t=1或.【點睛】本題考查了二次函數(shù)的圖象與性質(zhì),解二元一次方程組和一元二次方程,等腰直角三角形的性質(zhì),相似三角形的判定和性質(zhì),涉及等腰三角形的分類討論,要充分利用等腰的性質(zhì)作為列方程的依據(jù).8.如圖所示拋物線過點,點,且(1)求拋物線的解析式及其對稱軸;(2)點在直線上的兩個動點,且,點在點的上方,求四邊形的周長的最小值;(3)點為拋物線上一點,連接,直線把四邊形的面積分為3∶5兩部分,求點的坐標.【答案】(1),對稱軸為直線;(2)四邊形的周長最小值為;(3)【解析】【分析】(1)OB=OC,則點B(3,0),則拋物線的表達式為:y=a(x+1)(x3)=a(x22x3)=ax22ax3a,即可求解;(2)CD+AE=A′D+DC′,則當A′、D、C′三點共線時,CD+AE=A′D+DC′最小,周長也最小,即可求解;(3)S△PCB:S△PCA=EB(yCyP):AE(yCyP)=BE:AE,即可求解.【詳解】(1)∵OB=OC,∴點B(3,0),則拋物線的表達式為:y=a(x+1)(x3)=a(x22x3)=ax22ax3a,故3a=3,解得:a=1,故拋物線的表達式為:y=x2+2x+3…①;對稱軸為:直線(2)ACDE的周長=AC+DE+CD+AE,其中AC=、DE=1是常數(shù),故CD+AE最小時,周長最小,取點C關(guān)于函數(shù)對稱點C(2,3),則CD=C′D,取點A′(1,1),則A′D=AE,故:CD+AE=A′D+DC′,則當A′、D、C′三點共線時,CD+AE=A′D+DC′最小,周長也最小,四邊形ACDE的周長的最小值=AC+DE+CD+AE=+1+A′D+DC′=+1+A′C′=+1+;(3)如圖,設(shè)直線CP交x軸于點E,直線CP把四邊形CBPA的面積分為3:5兩部分,又∵S△PCB:S△PCA=EB(yCyP):AE(yCyP)=BE:AE,則BE:AE,=3:5或5:3,則AE=或,即:點E的坐標為(,0)或(,0),將點E、C的坐標代入一次函數(shù)表達式:y=kx+3,解得:k=6或2,故直線CP的表達式為:y=2x+3或y=6x+3…②聯(lián)立①②并解得:x=4或8(不合題意值已舍去),故點P的坐標為(4,5)或(8,45).【點睛】本題考查的是二次函數(shù)綜合運用,涉及到一次函數(shù)、圖象面積計算、點的對稱性等,其中(1),通過確定點A′點來求最小值,是本題的難點.9.如圖,拋物線y=ax2+6x+c交x軸于A,B兩點,交y軸于點C.直線y=x﹣5經(jīng)過點B,C.(1)求拋物線的解析式;(2)過點A的直線交直線BC于點M.①當AM⊥BC時,過拋物線上一動點P(不與點B,C重合),作直線AM的平行線交直線BC于點Q,若以點A,M,P,Q為頂點的四邊形是平行四邊形,求點P的橫坐標;②連接AC,當直線AM與直線BC的夾角等于∠ACB的2倍時,請直接寫出點M的坐標.【答案】(1)拋物線解析式為y=﹣x2+6x﹣5;(2)①P點的橫坐標為4或或;②點M的坐標為(,﹣)或(,﹣).【解析】分析:(1)利用一次函數(shù)解析式確定C(0,5),B(5,0),然后利用待定系數(shù)法求拋物線解析式;(2)①先解方程x2+6x5=0得A(1,0),再判斷△OCB為等腰直角三角形得到∠OBC=∠OCB=45176。,則△AMB為等腰直角三角形,所以AM=2,接著根據(jù)平行四邊形的性質(zhì)得到PQ=AM=2,PQ⊥BC,作PD⊥x軸交直線BC于D,如圖1,利用∠PDQ=45176。得到PD=PQ=4,設(shè)P(m,m2+6m5),則D(m,m5),討論:當P點在直線BC上方時,PD=m2+6m5(m5)=4;當P點在直線BC下方時,PD=m5(m2+6m5),然后分別解方程即可得到P點的橫坐標;②作AN⊥BC于N,NH⊥x軸于H,作AC的垂直平分線交BC于M1,交AC于E,如圖2,利用等腰三角形的性質(zhì)和三角形外角性質(zhì)得到∠AM1B=2∠ACB,再確定N(3,2),AC的解析式為y=5x5,E點坐標為(,),利用兩直線垂直的問題可設(shè)直線EM1的解析式為y=x+b,把E(,)代入求出b得到直線EM1的解析式為y=x,則解方程組得M1點的坐標;作直線BC上作點M1關(guān)于N點的對稱點M2,如圖2,利用對稱性得到∠AM2C=∠AM1B=2∠ACB,設(shè)M2(x,x5),根據(jù)中點坐標公式得到3=,然后求出x即可得到M2的坐標,從而得到滿足條件的點M的坐
點擊復(fù)制文檔內(nèi)容
規(guī)章制度相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1