freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

中考數(shù)學備考之二次函數(shù)壓軸突破訓(xùn)練∶培優(yōu)篇附答案解析(編輯修改稿)

2025-03-31 07:11 本頁面
 

【文章內(nèi)容簡介】 線經(jīng)過原點O,頂點A(1,﹣1),且與直線y=kx+2相交于B(2,0)和C兩點(1)求拋物線和直線BC的解析式;(2)求證:△ABC是直角三角形;(3)拋物線上存在點E(點E不與點A重合),使∠BCE=∠ACB,求出點E的坐標;(4)在拋物線的對稱軸上是否存在點F,使△BDF是等腰三角形?若存在,請直接寫出點F的坐標.【答案】(1)y=x2﹣2x,y=﹣x+2;(2)詳見解析;(3)E();(4)符合條件的點F的坐標(1,)或(1,﹣)或(1,2+)或(1,2﹣).【解析】【分析】(1)將B(2,0)代入設(shè)拋物線解析式y(tǒng)=a(x﹣1)2﹣1,求得a,將B(2,0)代入y=kx+2,求得k;(2)分別求出ABBCAC2,根據(jù)勾股定理逆定理即可證明;(3)作∠BCE=∠ACB,與拋物線交于點E,延長AB,與CE的延長線交于點A39。,過A39。作A39。H垂直x軸于點H,設(shè)二次函數(shù)對稱軸于x軸交于點G.根據(jù)對稱與三角形全等,求得A39。(3,1),然后求出A39。C解析式,與拋物線解析式聯(lián)立,求得點E坐標;(4)設(shè)F(1,m),分三種情況討論:①當BF=BD時,②當DF=BD時,③當BF=DF時,m=1,然后代入即可.【詳解】(1)設(shè)拋物線解析式y(tǒng)=a(x﹣1)2﹣1,將B(2,0)代入,0=a(2﹣1)2﹣1,∴a=1,拋物線解析式:y=(x﹣1)2﹣1=x2﹣2x,將B(2,0)代入y=kx+2,0=2k+2,k=﹣1,∴直線BC的解析式:y=﹣x+2;(2)聯(lián)立,解得,∴C(﹣1,3),∵A(1,﹣1),B(2,0),∴AB2=(1﹣2)2+(﹣1﹣0)2=2,AC2=[1﹣(﹣1)]2+(﹣1﹣3)2=20,BC2=[2﹣(﹣1)]2+(0﹣3)2=18,∴AB2+BC2=AC2,∴△ABC是直角三角形;(3)如圖,作∠BCE=∠ACB,與拋物線交于點E,延長AB,與CE的延長線交于點A39。,過A39。作A39。H垂直x軸于點H,設(shè)二次函數(shù)對稱軸于x軸交于點G.∵∠BCE=∠ACB,∠ABC=90176。,∴點A與A39。關(guān)于直線BC對稱,AB=A39。B,可知△AFB≌△A39。HB(AAS),∵A(1,﹣1),B(2,0)∴AG=1,BG=OG=1,∴BH=1,A39。H=1,OH=3,∴A39。(3,1),∵C(﹣1,3),∴直線A39。C:,聯(lián)立:,解得或,∴E(,);(4)∵拋物線的對稱軸:直線x=1,∴設(shè)F(1,m),直線BC的解析式:y=﹣x+2;∴D(0,2)∵B(2,0),∴BD=,①當BF=BD時,m=177。,∴F坐標(1,)或(1,﹣)②當DF=BD時,m=2177。,∴F坐標(1,2+)或(1,2﹣)③當BF=DF時,m=1,F(xiàn)(1,1),此時B、D、F在同一直線上,不符合題意.綜上,符合條件的點F的坐標(1,)或(1,﹣)或(1,2+)或(1,2﹣).【點睛】考查了二次函數(shù),熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.8.如圖1,已知拋物線y=ax2+bx+3(a≠0)與x軸交于點A(1,0)和點B(﹣3,0),與y軸交于點C.(1)求拋物線的解析式;(2)設(shè)拋物線的對稱軸與x軸交于點M,問在對稱軸上是否存在點P,使△CMP為等腰三角形?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.(3)在(1)中拋物線的對稱軸上是否存在點Q,使得△QAC的周長最小?若存在,求出Q點的坐標;若不存在,請說明理由.(4)如圖2,若點E為第二象限拋物線上一動點,連接BE、CE,求四邊形BOCE面積的最大值,并求此時E點的坐標.【答案】(1)y=﹣x2﹣2x+3;(2)存在符合條件的點P,其坐標為P(﹣1,)或P(﹣1,﹣)或P(﹣1,6)或P(﹣1,);(3)存在,Q(﹣1,2);(4), .【解析】【分析】(1)已知拋物線過A、B兩點,可將兩點的坐標代入拋物線的解析式中,用待定系數(shù)法即可求出二次函數(shù)的解析式;(2)可根據(jù)(1)的函數(shù)解析式得出拋物線的對稱軸,也就得出了M點的坐標,由于C是拋物線與y軸的交點,因此C的坐標為(0,3),根據(jù)M、C的坐標可求出CM的距離.然后分三種情況進行討論:①當CP=PM時,P位于CM的垂直平分線上.求P點坐標關(guān)鍵是求P的縱坐標,過P作PQ⊥y軸于Q,如果設(shè)PM=CP=x,那么直角三角形CPQ中CP=x,OM的長,可根據(jù)M的坐標得出,CQ=3﹣x,因此可根據(jù)勾股定理求出x的值,P點的橫坐標與M的橫坐標相同,縱坐標為x,由此可得出P的坐標.②當CM=MP時,根據(jù)CM的長即可求出P的縱坐標,也就得出了P的坐標(要注意分上下兩點).③當CM=CP時,因為C的坐標為(0,3),那么直線y=3必垂直平分PM,因此P的縱坐標是6,由此可得出P的坐標;(3)根據(jù)軸對稱﹣最短路徑問題解答;(4)由于四邊形BOCE不是規(guī)則的四邊形,因此可將四邊形BOCE分割成規(guī)則的圖形進行計算,過E作EF⊥x軸于F,S四邊形BOCE=S△BFE+S梯形FOCE.直角梯形FOCE中,F(xiàn)O為E的橫坐標的絕對值,EF為E的縱坐標,已知C的縱坐標,就知道了OC的長.在△BFE中,BF=BO﹣OF,因此可用E的橫坐標表示出BF的長.如果根據(jù)拋物線設(shè)出E的坐標,然后代入上面的線段中,即可得出關(guān)于四邊形BOCE的面積與E的橫坐標的函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)即可求得四邊形BOCE的最大值及對應(yīng)的E的橫坐標的值.即可求出此時E的坐標.【詳解】(1)∵拋物線y=ax2+bx+3(a≠0)與x軸交于點A(1,0)和點B(﹣3,0),∴,解得:.∴所求拋物線解析式為:y=﹣x2﹣2x+3;(2)如答圖1,∵拋物線解析式為:y=﹣x2﹣2x+3,∴其對稱軸為x==﹣1,∴設(shè)P點坐標為(﹣1,a),當x=0時,y=3,∴C(0,3),M(﹣1,0)∴當CP=PM時,(﹣1)2+(3﹣a)2=a2,解得a=,∴P點坐標為:P1(﹣1,);∴當CM=PM時,(﹣1)2+32=a2,解得a=177。,∴P點坐標為:P2(﹣1,)或P3(﹣1,﹣);∴當CM=CP時,由勾股定理得:(﹣1)2+32=(﹣1)2+(3﹣a)2,解得a=6,∴P點坐標為:P4(﹣1,6).綜上所述存在符合條件的點P,其坐標為P(﹣1,)或P(﹣1,﹣)或P(﹣1,6)或P(﹣1,);(3)存在,Q(﹣1,2),理由如下:如答圖2,點C(0,3)關(guān)于對稱軸x=﹣1的對稱點C′的坐標是(﹣2,3),連接AC′,直線AC′與對稱軸的交點即為點Q.設(shè)直線AC′函數(shù)關(guān)系式為:y=kx+t(k≠0).將點A(1,0),C′(﹣2,3)代入,得,解得,所以,直線AC′函數(shù)關(guān)系式為:y=﹣x+1.將x=﹣1代入,得y=2,即:Q(﹣1,2);(4)過點E作EF⊥x軸于點F,設(shè)E(a,﹣a2﹣2a+3)(﹣3<a<0)∴EF=﹣a2﹣2a+3,BF=a+3,OF=﹣a∴S四邊形BOCE=BF?EF+(OC+EF)?OF=(a+3)?(﹣a2﹣2a+3)+(﹣a2﹣2a+6)?(﹣a)=﹣a2﹣a+=﹣(a+)2+,∴當a=﹣時,S四邊形BOCE最大,且最大值為.此時,點E坐標為(﹣ ,).【點睛】本題主要考查了二次函數(shù)的綜合知識,要注意的是(2)中,不確定等腰三角形哪條邊是底邊的情況下,要分類進行求解,不要漏解.9.如圖①,已知拋物線y=ax2+bx+c的圖像經(jīng)過點A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點A作AC∥x軸交拋物線于點C,∠AOB的平分線交線段AC于點E,點P是拋物線上的一個動點,設(shè)其橫坐標為m.(1)求拋物線的解析式; (2)若動點P在直線OE下方的拋物線上,連結(jié)PE、PO,當m為何值時,四邊形AOPE面積最大,并求出其最大值; (3)如圖②,F(xiàn)是拋物線的對稱軸l上的一點,在拋物線上是否存在點P使△POF成為以點P為直角頂點的等腰直角三角形?若存在,直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.【答案】(1)y=x24x+3.(2)當m=時,四邊形AOPE面積最大,最大值為.(3)P點的坐標為 :P1(,),P2(,),P3(,),P4(,). 【解析】分析:(1)利用對稱性可得點D的坐標,
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1