freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學(xué)備考之二次函數(shù)壓軸突破訓(xùn)練∶培優(yōu)-易錯(cuò)-難題篇附答案(1)(編輯修改稿)

2025-03-30 22:26 本頁(yè)面
 

【文章內(nèi)容簡(jiǎn)介】 :∵m≠0,∴b24ac =(2m)2410=4m20.∴拋物線與x軸有2個(gè)交點(diǎn)(2)解:∵點(diǎn)A(n+5,0),B(n1,0)在拋物線上∴拋物線的對(duì)稱軸x=∴ =2,即m=2.∴拋物線的表達(dá)式為y=x24x.∴點(diǎn)A(0,0),點(diǎn)B(4,0)或點(diǎn)A(4,0),點(diǎn)B(0,0),點(diǎn)M(2,4)∴△ABM的面積為44=8(3)解:方法一(圖象法):∵拋物線y=x2+2mx的對(duì)稱軸為x=m,開(kāi)口向上?!喈?dāng)對(duì)稱軸在直線x=3的右邊時(shí),顯然不符合題目條件(如圖1).當(dāng)對(duì)稱軸在直線x=2的左邊時(shí),顯然符合題目條件(如圖2).此時(shí),m2,即m2.當(dāng)對(duì)稱軸在直線x=2和x=3之間時(shí),滿足3(m)m2即可(如圖3).即m.綜上所述,m的取值范圍m方法二(代數(shù)法):由已知得,p=4+4m,g=9+6m,r=16+8m.∵pqr, ∴4+4m9+6m16+8m,解得m>.【點(diǎn)睛】二次函數(shù)的綜合應(yīng)用題。與X軸交點(diǎn)的情況當(dāng)△=b24ac0時(shí),函數(shù)圖像與x軸有兩個(gè)交點(diǎn)。當(dāng)△=b24ac=0時(shí),函數(shù)圖像與x軸只有一個(gè)交點(diǎn)。Δ=b24ac0時(shí),拋物線與x軸沒(méi)有交點(diǎn)。熟練運(yùn)用頂點(diǎn)坐標(biāo)(,)8.如圖1,在矩形ABCD中,DB=6,AD=3,在Rt△PEF中,∠PEF=90176。,EF=3,PF=6,△PEF(點(diǎn)F和點(diǎn)A重合)的邊EF和矩形的邊AB在同一直線上.現(xiàn)將Rt△PEF從A以每秒1個(gè)單位的速度向射線AB方向勻速平移,當(dāng)點(diǎn)F與點(diǎn)B重合時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,解答下列問(wèn)題:(1)如圖1,連接PD,填空:PE=   ,∠PFD=   度,四邊形PEAD的面積是   ;(2)如圖2,當(dāng)PF經(jīng)過(guò)點(diǎn)D時(shí),求△PEF運(yùn)動(dòng)時(shí)間t的值;(3)在運(yùn)動(dòng)的過(guò)程中,設(shè)△PEF與△ABD重疊部分面積為S,請(qǐng)直接寫(xiě)出S與t的函數(shù)關(guān)系式及相應(yīng)的t的取值范圍.【答案】(1)300,;(2);(3)見(jiàn)解析.【解析】分析:(1)根據(jù)銳角三角形函數(shù)可求出角的度數(shù),然后根據(jù)勾股定理求出PE的長(zhǎng),再根據(jù)梯形的面積公式求解.(2)當(dāng)PF經(jīng)過(guò)點(diǎn)D時(shí),PE∥DA,由EF=3,PF=6,可得∠EPD=∠ADF=30176。,用三角函數(shù)計(jì)算可得AF=t=;(3)根據(jù)題意,分三種情況:①當(dāng)0≤t<時(shí),②≤t<3時(shí),③3≤t≤6時(shí),根據(jù)三角形、梯形的面積的求法,求出S與t的函數(shù)關(guān)系式即可.詳解:(1)∵在Rt△PEF中,∠PEF=90176。,EF=3,PF=6∴sin∠P= ∴∠P=30176?!逷E∥AD∴∠PAD=300,根據(jù)勾股定理可得PE=3,所以S四邊形PEAD=(3+3)3=; (2)當(dāng)PF經(jīng)過(guò)點(diǎn)D時(shí),PE∥DA,由EF=3,PF=6,得∠EPF=∠ADF=30176。,在Rt△ADF中,由AD=3,得AF=,所以t= ; (3)分三種情況討論: ①當(dāng)0≤t<時(shí), PF交AD于Q,∵AF=t,AQ=t,∴S=tt=;②當(dāng)≤t<3時(shí),PF交BD于K,作KH⊥AB于H,∵AF=t,∴BF=3t,S△ABD=,∵∠FBK=∠FKB,∴FB=FK=3t,KH=KFsin600=,∴S=S△ABD﹣S△FBK =③當(dāng)3≤t≤3時(shí),PE與BD交O,PF交BD于K,∵AF=t,∴AE=t3,BF=3t,BE=3t+3,OE=BEtan300=,∴S=.點(diǎn)睛:此題主要考查了幾何變換綜合題,用到的知識(shí)點(diǎn)有直角三角形的性質(zhì),三角函數(shù)值,三角形的面積,圖形的平移等,考查了分析推理能力,分類討論思想,數(shù)形結(jié)合思想,要熟練掌握,比較困難.9.如圖,已知拋物線的圖象與x軸的一個(gè)交點(diǎn)為B(5,0),另一個(gè)交點(diǎn)為A,且與y軸交于點(diǎn)C(0,5)。(1)求直線BC與拋物線的解析式;(2)若點(diǎn)M是拋物線在x軸下方圖象上的動(dòng)點(diǎn),過(guò)點(diǎn)M作MN∥y軸交直線BC于點(diǎn)N,求MN的最大值;(3)在(2)的條件下,MN取得最大值時(shí),若點(diǎn)P是拋物線在x軸下方圖象上任意一點(diǎn),以BC為邊作平行四邊形CBPQ,設(shè)平行四邊形CBPQ的面積為S1,△ABN的面積為S2,且S1=6S2,求點(diǎn)P的坐標(biāo)。【答案】(1)(2)(3)P的坐標(biāo)為(-1,12)或(6,5)或(2,-3)或(3,-4)【解析】【分析】(1)由B(5,0),C(0,5),應(yīng)用待定系數(shù)法即可求直線BC與拋物線的解析式。(2)構(gòu)造MN關(guān)于點(diǎn)M橫坐標(biāo)的函數(shù)關(guān)系式,應(yīng)用二次函數(shù)最值原理求解。(3)根據(jù)S1=6S2求得BC與PQ的距離h,從而求得PQ由BC平移的距離,根據(jù)平移的性質(zhì)求得PQ的解析式,與拋物線聯(lián)立,即可求得點(diǎn)P的坐標(biāo)。【詳解】解:(1)設(shè)直線BC的解析式為,將B(5,0),C(0,5)代入,得,得?!嘀本€BC的解析式為。將B(5,0),C(0,5)代入,得,得。∴拋物線的解析式。(2)∵點(diǎn)M是拋物線在x軸下方圖象上的動(dòng)點(diǎn),∴設(shè)M?!唿c(diǎn)N是直線BC上與點(diǎn)M橫坐標(biāo)相同的點(diǎn),∴N。∵當(dāng)點(diǎn)M在拋物線在x軸下方時(shí),N的縱坐標(biāo)總大于M的縱坐標(biāo)?!??!郙N的最大值是。(3)當(dāng)MN取得最大值時(shí),N?!叩膶?duì)稱軸是,B(5,0),∴A(1,0)?!郃B=4?!唷S晒垂啥ɡ砜傻?。設(shè)BC與PQ的距離為h,則由S1=6S2得:,即。如圖,過(guò)點(diǎn)B作平行四邊形CBPQ的高BH,過(guò)點(diǎn)H作x軸的垂線交點(diǎn)E ,則BH=,EH是直線BC沿y軸方向平移的距離。易得,△BEH是等腰直角三角形,∴EH=?!嘀本€BC沿y軸方向平移6個(gè)單位得PQ的解析式:或。當(dāng)時(shí),與聯(lián)立,得,解得或。此時(shí),點(diǎn)P的坐標(biāo)為(-1,12)或(6,5)。當(dāng)時(shí),與聯(lián)立,得,解得或。此時(shí),點(diǎn)P的坐標(biāo)為(2,-3)或(3,-4)。綜上所述,點(diǎn)P的坐標(biāo)為(-1,12)或(6,5)或(2,-3)或(3,-4)。10.在平面直角坐標(biāo)系中,我們定義直線y=axa為拋物線y=ax2+bx+c(a、b、c為常數(shù),a≠0)的“衍生直線”;有一個(gè)頂點(diǎn)在拋物線上,另有一個(gè)頂點(diǎn)在y軸上的三角形為其“衍生三角形”.已知拋物線與其“衍生直線”交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與x軸負(fù)半軸交于點(diǎn)C.(1)填空:該拋物線的“衍生直線”的解析式為 ,點(diǎn)A的坐標(biāo)為 ,點(diǎn)B的坐標(biāo)為 ;(2)如圖,點(diǎn)M為線段CB上一動(dòng)點(diǎn),將△ACM以AM所在直線為對(duì)稱軸翻折,點(diǎn)C的對(duì)稱點(diǎn)為N,若△AMN為該拋物線的“衍生三角形”,求點(diǎn)N的坐標(biāo);(3)當(dāng)點(diǎn)E在拋物線的對(duì)稱軸上運(yùn)動(dòng)時(shí),在該拋物線的“衍生直線”上,是否存在點(diǎn)F,使得以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)E、F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.【答案】(1);(2,);(1,0);(2)N點(diǎn)的坐標(biāo)為(0,),(0,);(3)E(1,)、F(0,)或E(1,),F(xiàn)(4,)【解析】【分析】(1)由拋物線的“衍生直線”知道二次函數(shù)解析式的a即可;(2)過(guò)A作AD⊥y軸于點(diǎn)D,則可知AN=AC,結(jié)合A點(diǎn)坐標(biāo),則可求出ON的長(zhǎng),可求出N點(diǎn)的坐標(biāo);(3)分別討論當(dāng)AC為平行四邊形的邊時(shí),當(dāng)AC為平行四邊形的對(duì)角線時(shí),求出滿足條件的E、F坐標(biāo)即可【詳解】(1)∵,a=,則拋物線的“衍生直線”的解析式為;聯(lián)立兩解析式求交點(diǎn),解得或,∴A(2,),B(1,0);(2)如圖1,過(guò)A作AD⊥y軸于點(diǎn)D,在中,令y=0可求得x= 3或x=1
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1