freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx全國(guó)各地中考數(shù)學(xué)分類(lèi):二次函數(shù)綜合題匯編(編輯修改稿)

2025-03-30 22:22 本頁(yè)面
 

【文章內(nèi)容簡(jiǎn)介】 求拋物線的解析式;(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PAB的面積有最大值?(3)過(guò)點(diǎn)P作x軸的垂線,交線段AB于點(diǎn)D,再過(guò)點(diǎn)P做PE∥x軸交拋物線于點(diǎn)E,連結(jié)DE,請(qǐng)問(wèn)是否存在點(diǎn)P使△PDE為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.【答案】(1)拋物線解析式為y=﹣x2+2x+6;(2)當(dāng)t=3時(shí),△PAB的面積有最大值;(3)點(diǎn)P(4,6).【解析】【分析】(1)利用待定系數(shù)法進(jìn)行求解即可得;(2)作PM⊥OB與點(diǎn)M,交AB于點(diǎn)N,作AG⊥PM,先求出直線AB解析式為y=﹣x+6,設(shè)P(t,﹣t2+2t+6),則N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=PN?AG+PN?BM=PN?OB列出關(guān)于t的函數(shù)表達(dá)式,利用二次函數(shù)的性質(zhì)求解可得;(3)由PH⊥OB知DH∥AO,據(jù)此由OA=OB=6得∠BDH=∠BAO=45176。,結(jié)合∠DPE=90176。知若△PDE為等腰直角三角形,則∠EDP=45176。,從而得出點(diǎn)E與點(diǎn)A重合,求出y=6時(shí)x的值即可得出答案.【詳解】(1)∵拋物線過(guò)點(diǎn)B(6,0)、C(﹣2,0),∴設(shè)拋物線解析式為y=a(x﹣6)(x+2),將點(diǎn)A(0,6)代入,得:﹣12a=6,解得:a=﹣,所以?huà)佄锞€解析式為y=﹣(x﹣6)(x+2)=﹣x2+2x+6;(2)如圖1,過(guò)點(diǎn)P作PM⊥OB與點(diǎn)M,交AB于點(diǎn)N,作AG⊥PM于點(diǎn)G,設(shè)直線AB解析式為y=kx+b,將點(diǎn)A(0,6)、B(6,0)代入,得:,解得:,則直線AB解析式為y=﹣x+6,設(shè)P(t,﹣t2+2t+6)其中0<t<6,則N(t,﹣t+6),∴PN=PM﹣MN=﹣t2+2t+6﹣(﹣t+6)=﹣t2+2t+6+t﹣6=﹣t2+3t,∴S△PAB=S△PAN+S△PBN=PN?AG+PN?BM=PN?(AG+BM)=PN?OB=(﹣t2+3t)6=﹣t2+9t=﹣(t﹣3)2+,∴當(dāng)t=3時(shí),△PAB的面積有最大值;(3)如圖2,∵PH⊥OB于H,∴∠DHB=∠AOB=90176。,∴DH∥AO,∵OA=OB=6,∴∠BDH=∠BAO=45176。,∵PE∥x軸、PD⊥x軸,∴∠DPE=90176。,若△PDE為等腰直角三角形,則∠EDP=45176。,∴∠EDP與∠BDH互為對(duì)頂角,即點(diǎn)E與點(diǎn)A重合,則當(dāng)y=6時(shí),﹣x2+2x+6=6,解得:x=0(舍)或x=4,即點(diǎn)P(4,6).【點(diǎn)睛】本題考查了二次函數(shù)的綜合問(wèn)題,涉及到待定系數(shù)法、二次函數(shù)的最值、等腰直角三角形的判定與性質(zhì)等,熟練掌握和靈活運(yùn)用待定系數(shù)法求函數(shù)解析式、二次函數(shù)的性質(zhì)、等腰直角三角形的判定與性質(zhì)等是解題的關(guān)鍵.9.(10分)(2015?佛山)如圖,一小球從斜坡O點(diǎn)處拋出,球的拋出路線可以用二次函數(shù)y=﹣x2+4x刻畫(huà),斜坡可以用一次函數(shù)y=x刻畫(huà).(1)請(qǐng)用配方法求二次函數(shù)圖象的最高點(diǎn)P的坐標(biāo);(2)小球的落點(diǎn)是A,求點(diǎn)A的坐標(biāo);(3)連接拋物線的最高點(diǎn)P與點(diǎn)O、A得△POA,求△POA的面積;(4)在OA上方的拋物線上存在一點(diǎn)M(M與P不重合),△MOA的面積等于△POA的面積.請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo).【答案】(1)(2,4);(2)(,);(3);(4)(,).【解析】試題分析:(1)利用配方法拋物線的一般式化為頂點(diǎn)式,即可求出二次函數(shù)圖象的最高點(diǎn)P的坐標(biāo);(2)聯(lián)立兩解析式,可求出交點(diǎn)A的坐標(biāo);(3)作PQ⊥x軸于點(diǎn)Q,AB⊥x軸于點(diǎn)B.根據(jù)S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入數(shù)值計(jì)算即可求解;(4)過(guò)P作OA的平行線,交拋物線于點(diǎn)M,連結(jié)OM、AM,由于兩平行線之間的距離相等,根據(jù)同底等高的兩個(gè)三角形面積相等,可得△MOA的面積等于△POA的面積.設(shè)直線PM的解析式為y=x+b,將P(2,4)代入,求出直線PM的解析式為y=x+3.再與拋物線的解析式聯(lián)立,得到方程組,解方程組即可求出點(diǎn)M的坐標(biāo).試題解析:(1)由題意得,y=﹣x2+4x=﹣(x﹣2)2+4,故二次函數(shù)圖象的最高點(diǎn)P的坐標(biāo)為(2,4);(2)聯(lián)立兩解析式可得:,解得:,或.故可得點(diǎn)A的坐標(biāo)為(,);(3)如圖,作PQ⊥x軸于點(diǎn)Q,AB⊥x軸于點(diǎn)B.S△POA=S△POQ+S△梯形PQBA﹣S△BOA=24+(+4)(﹣2)﹣=4+﹣=;(4)過(guò)P作OA的平行線,交拋物線于點(diǎn)M,連結(jié)OM、AM,則△MOA的面積等于△POA的面積.設(shè)直線PM的解析式為y=x+b,∵P的坐標(biāo)為(2,4),∴4=2+b,解得b=3,∴直線PM的解析式為y=x+3.由,解得,∴點(diǎn)M的坐標(biāo)為(,).考點(diǎn):二次函數(shù)的綜合題10.綜合與探究如圖,拋物線經(jīng)過(guò)點(diǎn)A(2,0),B(4,0)兩點(diǎn),與軸交于點(diǎn)C,點(diǎn)D是拋物線上一個(gè)動(dòng)點(diǎn),BC,DB,DC.(1)求拋物線的函數(shù)表達(dá)式;(2)△BCD的面積等于△AOC的面積的時(shí),求的值;(3)在(2)的條件下,若點(diǎn)M是軸上的一個(gè)動(dòng)點(diǎn),點(diǎn)N是拋物線上一動(dòng)點(diǎn),試判斷是否存在這樣的點(diǎn)M,使得以點(diǎn)B,D,M,N為頂點(diǎn)的四邊形是平行四邊形,若存在,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.【答案】(1);(2)3;(3).【解析】【分析】(1)利用待定系數(shù)法進(jìn)行求解即可;(2)作直線DE⊥軸于點(diǎn)E,交BC于點(diǎn)G,作CF⊥DE,垂足為F,先求出S△OAC=6,再根據(jù)S△BCD=S△AOC,得到S△BCD =,然后求出BC的解析式為,則可得點(diǎn)G的坐標(biāo)為,由此可得,再根據(jù)S△BCD=S△CDG+S△BDG=,可得關(guān)于m的方程,解方程即可求得答案;(3)存在,如下圖所示,以BD為邊或者以BD為對(duì)角線進(jìn)行平行四邊形的構(gòu)圖,以BD為邊時(shí),有3種情況,由點(diǎn)D的坐標(biāo)可得點(diǎn)N點(diǎn)縱坐標(biāo)為177。,然后分點(diǎn)N的縱坐標(biāo)為和點(diǎn)N的縱坐標(biāo)為兩種情況分別求解;以BD為對(duì)角線時(shí),有1種情況,此時(shí)N1點(diǎn)與N2點(diǎn)重合,根據(jù)平行四邊形的對(duì)邊平行且相等可求得BM1=N1D=4,繼而求得OM1= 8,由此即可求得答案.【詳解】(1)拋物線經(jīng)過(guò)點(diǎn)A(2,0),B(4,0),∴,解得,∴拋物線的函數(shù)表達(dá)式為;(2)作直線DE⊥軸于點(diǎn)E,交BC于點(diǎn)G,作CF⊥DE,垂足為F,∵點(diǎn)A的坐標(biāo)為(2,0),∴OA=2,由,得,∴點(diǎn)C的坐標(biāo)為(0,6),∴OC=6,∴S△OAC=,∵S△BCD=S△AOC,∴S△BCD =,設(shè)直線BC的函數(shù)表達(dá)式為,由B,C兩點(diǎn)的坐標(biāo)得,解得,∴直線BC的函數(shù)表達(dá)式為,∴點(diǎn)G的坐標(biāo)為,∴,∵點(diǎn)B的坐標(biāo)為(4,0),∴OB=4,∵S△BCD=S△CDG+S△BDG=,∴S△BCD =,∴,解得(舍),∴的值為3;(3)存在,如下圖所示,以BD為邊或者以BD為對(duì)角線進(jìn)行平行四邊形的構(gòu)圖,以BD為邊時(shí),有3種情況,∵D點(diǎn)坐標(biāo)為,∴點(diǎn)N點(diǎn)縱坐標(biāo)為177。,當(dāng)點(diǎn)N的縱坐標(biāo)為時(shí),如點(diǎn)N2,此時(shí),解得:(舍),∴,∴;當(dāng)點(diǎn)N的縱坐標(biāo)為時(shí),如點(diǎn)N3,N4,此時(shí),解得:∴,∴,;以BD為對(duì)角線時(shí),有1種情況,此時(shí)N1點(diǎn)與N2點(diǎn)重合,∵,D(3,),∴N1D=4,∴BM1=
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1