freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx中考數(shù)學(xué)知識點過關(guān)培優(yōu)易錯試卷訓(xùn)練∶平行四邊形及答案(編輯修改稿)

2025-03-30 22:21 本頁面
 

【文章內(nèi)容簡介】 <,∴以PQ為直徑的圓不與BC邊相切;(3)分三種情況:①當(dāng)點P在AB邊上,A39。落在BC邊上時,作QF⊥BC于F,如圖2所示:則QF=AB=8,BF=AQ=10,∵四邊形ABCD是矩形,∴∠A=∠B=∠BCD=∠D=90176。,CD=AB=8,AD=BC=18,由折疊的性質(zhì)得:PA39。=PA,A39。Q=AQ=10,∠PA39。Q=∠A=90176。,∴A39。F==6,∴A39。B=BFA39。F=4,在Rt△A39。BP中,BP=42t,PA39。=AP=8(42t)=4+2t,由勾股定理得:42+(42t)2=(4+2t)2,解得:t=;②當(dāng)點P在BC邊上,A39。落在BC邊上時,連接AA39。,如圖3所示:由折疊的性質(zhì)得:A39。P=AP,∴∠APQ39。=∠A39。PQ,∵AD∥BC,∴∠AQP=∠A39。PQ,∴∠APQ=∠AQP,∴AP=AQ=A39。P=10,在Rt△ABP中,由勾股定理得:BP==6, 又∵BP=2t4,∴2t4=6,解得:t=5;③當(dāng)點P在BC邊上,A39。落在CD邊上時,連接AP、A39。P,如圖4所示:由折疊的性質(zhì)得:A39。P=AP,A39。Q=AQ=10,在Rt△DQA39。中,DQ=ADAQ=8,由勾股定理得:DA39。==6,∴A39。C=CDDA39。=2,在Rt△ABP和Rt△A39。PC中,BP=2t4,CP=BCBP=18(2t4)=222t,由勾股定理得:AP2=82+(2t4)2,A39。P2=22+(222t)2,∴82+(2t4)2=22+(222t)2,解得:t=;綜上所述,t為或5或時,折疊后頂點A的對應(yīng)點A′落在矩形的一邊上.【點睛】四邊形綜合題目,考查了矩形的性質(zhì)、折疊變換的性質(zhì)、勾股定理、函數(shù)圖象、直線與圓的位置關(guān)系、三角形中位線定理、等腰三角形的判定、以及分類討論等知識.7.△ABC為等邊三角形,..(1)求證:四邊形是菱形.(2)若是的角平分線,連接,找出圖中所有的等腰三角形.【答案】(1)證明見解析;(2)圖中等腰三角形有△ABC,△BDC,△ABD,△ADF,△ADC,△ADE.【解析】【分析】(1)先求證BD∥AF,證明四邊形ABDF是平行四邊形,再利用有一組鄰邊相等的平行四邊形是菱形即可證明;(2)先利用BD平分∠ABC,得到BD垂直平分線段AC,進(jìn)而證明△DAC是等腰三角形,根據(jù)BD⊥AC,AF⊥AC,找到角度之間的關(guān)系,證明△DAE是等腰三角形,進(jìn)而得到BC=BD=BA=AF=DF,即可解題,見詳解.【詳解】(1)如圖1中,∵∠BCD=∠BDC,∴BC=BD,∵△ABC是等邊三角形,∴AB=BC,∵AB=AF,∴BD=AF,∵∠BDC=∠AEC,∴BD∥AF,∴四邊形ABDF是平行四邊形,∵AB=AF,∴四邊形ABDF是菱形.(2)解:如圖2中,∵BA=BC,BD平分∠ABC,∴BD垂直平分線段AC,∴DA=DC,∴△DAC是等腰三角形,∵AF∥BD,BD⊥AC∴AF⊥AC,∴∠EAC=90176。,∵∠DAC=∠DCA,∠DAC+∠DAE=90176。,∠DCA+∠AEC=90176。,∴∠DAE=∠DEA,∴DA=DE,∴△DAE是等腰三角形,∵BC=BD=BA=AF=DF,∴△BCD,△ABD,△ADF都是等腰三角形,綜上所述,圖中等腰三角形有△ABC,△BDC,△ABD,△ADF,△ADC,△ADE.【點睛】本題考查菱形的判定,等邊三角形的性質(zhì),等腰三角形的判定等知識,屬于中考??碱}型,熟練掌握等腰三角形的性質(zhì)是解題的關(guān)鍵.8.在中,BD為AC邊上的中線,過點C作于點E,過點A作BD的平行線,交CE的延長線于點F,在AF的延長線上截取,連接BG,DF.求證:;求證:四邊形BDFG為菱形;若,求四邊形BDFG的周長.【答案】(1)證明見解析(2)證明見解析(3)8【解析】【分析】利用平行線的性質(zhì)得到,再利用直角三角形斜邊上的中線等于斜邊的一半即可得證,利用平行四邊形的判定定理判定四邊形BDFG為平行四邊形,再利用得結(jié)論即可得證,設(shè),則,利用菱形的性質(zhì)和勾股定理得到CF、AF和AC之間的關(guān)系,解出x即可.【詳解】證明:,,又為AC的中點,又,證明:,四邊形BDFG為平行四邊形,又,四邊形BDFG為菱形,解:設(shè),則,在中,解得:,舍去,菱形BDFG的周長為8.【點睛】本題考查了菱形的判定與性質(zhì)直角三角形斜邊上的中線,勾股定理等知識,正確掌握這些定義性質(zhì)及判定并結(jié)合圖形作答是解決本題的關(guān)鍵.9.猜想與證明:如圖1,擺放矩形紙片ABCD與矩形紙片ECGF,使B、C、G三點在一條直線上,CE在邊CD上,連接AF,若M為AF的中點,連接DM、ME,試猜想DM與ME的關(guān)系,并證明你的結(jié)論.拓展與延伸:(1)若將”猜想與證明“中的紙片換成正方形紙片ABCD與正方形紙片ECGF,其他條件不變,則DM和ME的關(guān)系為   .(2)如圖2擺放正方形紙片ABCD與正方形紙片ECGF,使點F在邊CD上,點M仍為AF的中點,試證明(1)中的結(jié)論仍然成立.【答案】猜想:DM=ME,證明見解析;(2)成立,證明見解析.【解析】試題分析:延長EM交AD于點H,根據(jù)ABCD和CEFG為矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根據(jù)Rt△HDE得到HM=DE,則可以得到答案;(1)、延長EM交AD于點H,根據(jù)ABCD和CEFG為矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根據(jù)Rt△HDE得到HM=DE,則可以得到答案;(2)、連接AE,根據(jù)正方形的性質(zhì)得出∠FCE=45176。,∠FCA=45176。,根據(jù)RT△ADF中AM=MF得出DM=AM=MF,根據(jù)RT△AEF中AM=MF得出AM=MF=ME,從而說明DM=ME.試題解析:如圖1,延長EM交AD于點H,∵四邊形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,F(xiàn)M=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=DE,∴DM=HM=ME,∴DM=ME.(1)、如圖1,延長EM交AD于點H,∵四邊形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,F(xiàn)M=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM∴DM=HM=ME,∴DM=ME,(2)、如圖2,連接AE,∵四邊形ABCD和ECGF是正方形,∴∠FCE=45176。,∠FCA=45176。,∴AE和EC在同一條直線上,在RT△ADF中,AM=MF,∴DM=AM=MF,在RT△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.考點:(1)、三角形全等的性質(zhì);(2)、矩形的性質(zhì).10.在矩形紙片ABCD中,AB=6,BC=8,現(xiàn)將紙片折疊,使點D與點B重合,折痕為EF,連接DF.(1)說明△BEF是等腰三角形;
點擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1