freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx中考數(shù)學(xué)-平行四邊形-培優(yōu)-易錯(cuò)-難題練習(xí)(含答案)附答案解析(編輯修改稿)

2025-03-30 22:20 本頁面
 

【文章內(nèi)容簡介】 ,∴x=1,即點(diǎn)P1的坐標(biāo)為(1,10)【點(diǎn)睛】本題考查了矩形的性質(zhì)與判定、等腰三角形的性質(zhì)與判定及勾股定理等知識(shí)點(diǎn),利用面積法列出等式是解決問題的關(guān)鍵.8.如圖1,在△ABC中,AB=AC,AD⊥BC于D,分別延長AC至E,BC至F,且CE=EF,延長FE交AD的延長線于G.(1)求證:AE=EG;(2)如圖2,分別連接BG,BE,若BG=BF,求證:BE=EG;(3)如圖3,取GF的中點(diǎn)M,若AB=5,求EM的長.【答案】(1)證明見解析(2)證明見解析(3)【解析】【分析】(1)根據(jù)平行線的性質(zhì)和等腰三角形的三線合一的性質(zhì)得:∠CAD=∠G,可得AE=EG;(2)作輔助線,證明△BEF≌△GEC(SAS),可得結(jié)論;(3)如圖3,作輔助線,構(gòu)建平行線,證明四邊形DMEN是平行四邊形,得EM=DN=AC,計(jì)算可得結(jié)論.【詳解】證明:(1)如圖1,過E作EH⊥CF于H,∵AD⊥BC,∴EH∥AD,∴∠CEH=∠CAD,∠HEF=∠G,∵CE=EF,∴∠CEH=∠HEF,∴∠CAD=∠G,∴AE=EG;(2)如圖2,連接GC,∵AC=BC,AD⊥BC,∴BD=CD,∴AG是BC的垂直平分線,∴GC=GB,∴∠GBF=∠BCG,∵BG=BF,∴GC=BE,∵CE=EF,∴∠CEF=180176。﹣2∠F,∵BG=BF,∴∠GBF=180176。﹣2∠F,∴∠GBF=∠CEF,∴∠CEF=∠BCG,∵∠BCE=∠CEF+∠F,∠BCE=∠BCG+∠GCE,∴∠GCE=∠F,在△BEF和△GCE中,∴△BEF≌△GEC(SAS),∴BE=EG;(3)如圖3,連接DM,取AC的中點(diǎn)N,連接DN,由(1)得AE=EG,∴∠GAE=∠AGE,在Rt△ACD中,N為AC的中點(diǎn),∴DN=AC=AN,∠DAN=∠ADN,∴∠ADN=∠AGE,∴DN∥GF,在Rt△GDF中,M是FG的中點(diǎn),∴DM=FG=GM,∠GDM=∠AGE,∴∠GDM=∠DAN,∴DM∥AE,∴四邊形DMEN是平行四邊形,∴EM=DN=AC,∵AC=AB=5,∴EM=.【點(diǎn)睛】本題是三角形的綜合題,主要考查了全等三角形的判定與性質(zhì),直角三角形斜邊中線的性質(zhì),等腰三角形的性質(zhì)和判定,平行四邊形的性質(zhì)和判定等知識(shí),解題的關(guān)鍵是作輔助線,并熟練掌握全等三角形的判定方法,特別是第三問,輔助線的作法是關(guān)鍵.9.如圖1,在正方形ABCD中,點(diǎn)E,F(xiàn)分別是邊BC,AB上的點(diǎn),且CE=BF.連接DE,過點(diǎn)E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.(1)請(qǐng)判斷:FG與CE的關(guān)系是___;(2)如圖2,若點(diǎn)E,F(xiàn)分別是邊CB,BA延長線上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請(qǐng)作出判斷并給予證明;(3)如圖3,若點(diǎn)E,F(xiàn)分別是邊BC,AB延長線上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請(qǐng)直接寫出你的判斷.【答案】(1)FG=CE,F(xiàn)G∥CE;(2)成立;(3)成立.【解析】試題分析:(1)只要證明四邊形CDGF是平行四邊形即可得出FG=CE,F(xiàn)G∥CE;(2)構(gòu)造輔助線后證明△HGE≌△CED,利用對(duì)應(yīng)邊相等求證四邊形GHBF是矩形后,利用等量代換即可求出FG=C,F(xiàn)G∥CE;(3)證明△CBF≌△DCE后,即可證明四邊形CEGF是平行四邊形.試題解析:解:(1)FG=CE,F(xiàn)G∥CE;(2)過點(diǎn)G作GH⊥CB的延長線于點(diǎn)H.∵EG⊥DE,∴∠GEH+∠DEC=90176。.∵∠GEH+∠HGE=90176。,∴∠DEC=∠HE.在△HGE與△CED中,∵∠GHE=∠DCE,∠HGE=∠DEC,EG=DE,∴△HGE≌△CED(AAS),∴GH=CE,HE=CD.∵CE=BF,∴GH=BF.∵GH∥BF,∴四邊形GHBF是矩形,∴GF=BH,F(xiàn)G∥CH,∴FG∥CE.∵四邊形ABCD是正方形,∴CD=BC,∴HE=BC,∴HE+EB=BC+EB,∴BH=EC,∴FG=EC;(3)∵四邊形ABCD是正方形,∴BC=CD,∠FBC=∠ECD=90176。.在△CBF與△DCE中,∵BF=CE,∠FBC=∠ECD,BC=DC,∴△CBF≌△DCE(SAS),∴∠BCF=∠CDE,CF=DE.∵EG=DE,∴CF=EG.∵DE⊥EG,∴∠DEC+∠CEG=90176。.∵∠CDE+∠DEC=90176。,∴∠CDE=∠CEG,∴∠BCF=∠CEG,∴CF∥EG,∴四邊形CEGF平行四邊形,∴FG∥CE,F(xiàn)G=CE.10.如圖,在正方形ABCD中,點(diǎn)G在對(duì)角線BD上(不與點(diǎn)B,D重合),GE⊥DC于點(diǎn)E,GF⊥BC于點(diǎn)F,連結(jié)AG.(1)寫出線段AG,GE,GF長度之間的數(shù)量關(guān)系,并說明理由;(2)若正方形ABCD的邊長為1,∠AGF=105176。,求線段BG的長.【答案】(1)AG2=GE2+GF2(2)【解析】試題分析:(1)結(jié)論:AG2=GE2+GF2.只要證明GA=GC,四邊形EGFC是矩形,推出GE=CF,在Rt△GFC中,利用勾股定理即可證明;(2)作BN⊥AG于N,在BN上截取一點(diǎn)M,使得AM=BM.設(shè)AN=x.易證AM=BM=2x,MN=x,在Rt△ABN中,根據(jù)AB2=AN2+BN2,可得1=x2+(2x+x)2,解得x=,推出BN=,再根據(jù)BG=BN247。cos30176。即可解決問題.試題解析:(1)結(jié)論:AG2=GE2+GF2.理由:連接CG.∵四邊形ABCD是正方形,∴A、C關(guān)于對(duì)角線BD對(duì)稱,∵點(diǎn)G在BD上,∴GA=GC,∵GE⊥DC于點(diǎn)E,GF⊥BC于點(diǎn)F,∴∠GEC=∠ECF=∠CFG=90176。,∴四邊形EGFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.(2)作BN⊥AG于N,在BN上截取一點(diǎn)M,使得AM=BM.設(shè)AN=x.∵∠AGF=105176。,∠FBG=∠FGB=∠ABG=45176。,∴∠AGB=60176。,∠GBN=30176。,∠ABM=∠MAB=15176。,∴∠AMN=30176。,∴AM=BM=2x,MN=x,在Rt△ABN中,∵AB2=AN2+BN2,∴1=x2+(2x+x)2,解得x=,∴BN=,∴BG=BN247。cos30176。=.考點(diǎn):正方形的
點(diǎn)擊復(fù)制文檔內(nèi)容
語文相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1