【正文】
,計劃以后每年以相同的增長率投資, 20xx 年該市計劃投資 “改水工程 ”1176 萬元. 得分 評卷人 得分 評卷人 得分 評卷人 圖 8 為您服務教育網 4 ( 1)求 A 市投資 “改水工程 ”的年平均增長率; ( 2)從 20xx 年到 20xx 年, A 市三年共投資 “改水工程 ”多少萬元? (本小題 9 分) 23.某商品的進價為每件 30 元,現(xiàn)在的售價為每件 40 元,每星期可賣出 150 件.市場調查反 映:如果每件的售價每漲 1 元(售價每件不能高于 45 元),那么每星期少賣 10 件.設每件漲價 x 元( x 為非負整數(shù)),每星期的銷量為 y 件. ( 1)求 y 與 x 的函數(shù)關系式及自變量 x 的取值范圍; ( 2)如何定價才能使每星期的利潤最大且每星期的銷量較大?每星期的最大利潤是多少? (本小題 10 分) 24. 如圖 9, AB∥ CD、 AD∥ CE, F、 G 分別是 AC和 FD的中點,過 G 的直線依次交 AB、 AD、 CD、 CE 于點 M、 N、 P、 Q,求證:MN+ PQ= 2PN. (本小題 13 分) 25.如圖 10 所示,直角梯形 OABC 的頂點 A、 C 分別在y 軸正半軸與 x 軸負半軸上 .過點 B、 C 作直線 l .將直線 l 平移,平移后的直 線 l 與 x 軸交于點 D, 與 y 軸交于點 E. ( 1)將直線 l 向右平移,設平移距離 CD 為 t (t? 0),直角梯形 OABC 被直線 l 掃過的面積(圖中陰影部份)為 s, s 關于 t 的函數(shù)圖象如圖 11 所示, OM 為線段, MN 為拋物線的一部分,得分 評卷人 得分 評卷人 得分 評卷人 B A C M N P E F Q D G 圖 9 為您服務教育網 5 NQ 為射線, N 點橫坐標為 4. ① 求梯形上底 AB 的長及直角梯形 OABC 的面積; ② 當 42 ??t 時,求 S 關于 t 的函 數(shù)解析式; ( 2)在第( 1)題的條件下,當直線 l 向左或向右平移時(包括 l 與直線 BC 重合),在 直線 . .AB. . 上是否存在點 P,使 PDE? 為等腰直角三角形 ?若存在, 請直接寫出所有滿足條件的點 P的坐標 。 P( 1, 1) 1 1 2 2 3 3 - 1 - 1 O x y 圖 3 主視圖 左視圖 俯視圖 圖 2 ( A) ( B) ( C) ( D) O P O M? M P O M? M P O M? M P O M? M P 為您服務教育網 2 出發(fā),繞圓錐側面爬行,回到 P 點時所爬過的最短路線的痕跡如右圖所示.若沿 OM 將圓錐側面剪開并展開,所得側面展開圖是 【 】 10.如圖 □ ABCD 中, E 為