freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

證明不等式的幾種方法(留存版)

2024-11-03 22:04上一頁面

下一頁面
  

【正文】 n+bn)≤2(an+1+bn+1)2基本不等式法利用基本不等式及其變式證明不等式是常用的方法,常用的基本不等式及變形有:(1)若a、b∈R,則a2+b2≥2ab(當(dāng)且僅當(dāng)a=b時(shí),取等號(hào))(2)若a、b∈R+,則a+b≥ 2ab(當(dāng)且僅當(dāng)a=b時(shí),取等號(hào))(3)若a、b同號(hào),則 ba+ab≥2(當(dāng)且僅當(dāng)a=b時(shí),取等號(hào))例3 若a、b∈R,|a|≤1,|b|≤1則a1b2+b1a2≤1分析:通過觀察可直接套用: xy≤x2+y22證明: ∵a1b2b1a2≤a2+(1b2)2+b2(1a2)2=1∴b1a2+a1b2≤1,當(dāng)且僅當(dāng)a1+b2=1時(shí),等號(hào)成立練習(xí)2:若 ab0,證明a+1(ab)b≥33綜合法綜合法就是從已知或已證明過的不等式出發(fā),根據(jù)不等式性質(zhì)推算出要證明不等式。z2=231。2247。246。n的形式,然后再應(yīng)用上述配復(fù)數(shù)的代數(shù)形式,三角形式與幾何形式將代數(shù),巧妙運(yùn)用復(fù)數(shù)的性質(zhì)也可以使很多問題”柳暗花明”,y,z206。(1+xi)=n+1i=11xii=1nn222B+A=229。(u2uv+v2)+(v2vw+w2)+(u2uv+w22235。248。三角函數(shù)蘊(yùn)涵著豐富的公式與性質(zhì),求運(yùn)用這些公式與性質(zhì)巧妙地解決某些不等式的證明問題 例,b,c,x,滿y足zcy+bz=a,az+cx=b,bx+ay=c求證:xy1+x+1+y+z1+z179。z2=(x)231。6231。61232。179。,y,z是非負(fù)實(shí)數(shù),具x+y+z=1求證:證:構(gòu)造向量:ar=(x+y,x,y),br=(y+z,y,z),則cr=(z+x,z,x).ar+br+cr=(2,1,1),由ar+br+cr179。232。248。12(1+1+1)=所以abb+c+c+a+c9a+b179。第一篇:證明不等式的幾種方法證明不等式的幾種方法黃啟泉04數(shù)學(xué)與應(yīng)用數(shù)學(xué)1班30號(hào)近幾年來,有關(guān)不等式的證明問題在高考、競(jìng)賽中屢見不鮮,由于不等式的證明綜合性強(qiáng),對(duì)學(xué)生的思維靈活性與創(chuàng)造性要求較高,因此,許多考生往往“望題生嘆”,本人通過對(duì)該類題目認(rèn)真分析與研究,總結(jié)以下幾種解題方法,下面結(jié)合一些熱點(diǎn)題加以簡(jiǎn)要的介紹。32證明,給每個(gè)式子配以常數(shù)k有a+b+cb+cc+aa+b+3=(abcb+c+1)+(c+a+1)+(a+b+1)=(a+b+c)(1b+c+1c+a+1a+b)=1112[(b+c)+(c+a)+(a+b)](b+c+1c+a+a+b)179。247。212246。向量做為中學(xué)數(shù)學(xué)一種新的工具,具在證明不等式中有時(shí)能達(dá)到異曲同工之效。3++9z246。+248。6證:令z=x+y+4230。in證:令u=sin(ab)+sin(bg)+sin(ga)則u=sinacosb+sinbcosg+singcosasinbcosasingcosbsinacosgsinacosa1=sinbcosb1singcosg構(gòu)造點(diǎn)A(sab)B(ibb)C(nsgg)則u=SVABCn很明顯,上面三點(diǎn)A,B,C都在單位圓x2+y2=1上因?yàn)閳A內(nèi)接三角形以正三角形的面積最大所以當(dāng)VABC為正三角形時(shí),SVABC取得最大值,于是u163。u+v+u+w247。=u2+v2+w21233。231。1x2ni=229。n或m177。230。232。230。當(dāng)求證的不等式兩端是分項(xiàng)式(或分式)時(shí),常用作差比較,當(dāng)求證的不等式兩端是乘積形式(或冪指數(shù)式時(shí)常用作商比較)例1已知a+b≥0,求證:a3+b3≥a2b+ab2分析:由題目觀察知用“作差”比較,然后提取公因式,結(jié)合a+b≥0來說明作差后的正或負(fù),從而達(dá)到證明不等式的目的,步驟是10作差20變形整理30判斷差式的正負(fù)。證明:解設(shè)p+q>2,那么p>2q∴p3>(2q)3=812q+6q2q3將p3+q3 =2,代入得 6q212q+6<0即6(q1)2<0 由此得出矛盾∴p+q≤2練習(xí)7:已知a+b+c>0,ab+bc+ac>0,abc>:a>0,b>0,c>08數(shù)學(xué)歸納法與自然數(shù)n有關(guān)的不等式,通??紤]用數(shù)學(xué)歸納法來證明。,y,z∈R+,求證:x2y2+y2z2+z2x2x+y+z ≥ xyz錯(cuò)解:∵ x2y2+y2z2+z2x2≥ 3 3x2y2y2z2z2x2=3xyz3xyz 又x+y+z ≥ 3xyz ∴x2y2+y2z2+z2x2x+y+z≥ 3xyz33xyz33xyz=xyz錯(cuò)因:根據(jù)不等式的性質(zhì):若a >b> 0,c >d >0,則ac bd,但 ac>bd卻不一定成立 正解:x2y2+y2z2≥ 2x y2z,y2z2+z2x2≥ 2x yz2,x2y2+z2x2≥ 2x 2yz,以上三式相加,化簡(jiǎn)得:x2y2+y2z2+z2x2≥xyz(x+y+z),兩邊同除以x+y+z:x2y2+y2z2+z2x2x+y+z ≥ xyz 設(shè)x+y0,n為偶數(shù),求證yn1xn+xn1yn≥1x 1y錯(cuò)證:∵yn1xn+xn1yn1x1y=(xnyn)(xn1yn1)xnynn為偶數(shù),∴ xnyn >0,又xnyn和xn1yn1同號(hào),∴yn1xn+xn1yn≥ 1x1y錯(cuò)因:在x+y0的條件下,n為偶數(shù)時(shí),xnyn和xn1yn1不一定同號(hào),應(yīng)分x、y同號(hào)和異號(hào)兩種情況討論。+1≤na1a2188。2bc,a0,\a(b2+c2)179。1,求證:| x2+2xyy2|≤:令x=rcosq,y=rsinq則 | x2+2xyy2|=|r2(cos2q+2sinqcosqsin2q| =r2|cos2q+sin2q| = r2|2sin(2q+450)|≤1180。1212342n11.2n2n+132n1242n,B=180。188。R,a+b=1\b=1a\(a+2)+(b+2)252=a+b+4(a+b)12=2(a12)179。所以(a)0,這與231。a+b246。2248。AniBi179。+231。a+(1a)+4+8179。k的n成立可推出P(k+1)成立,1)成立,則P(n)對(duì)所有n成立.(5)、(最小數(shù)原理)自然數(shù)集的非空子集中必有一個(gè)最小數(shù).(6)、若P)且若P(k),P(k+1)成立可推出P(k+2)成立,則P(n)1(,P(2)成立,對(duì)所有n成立.(7)、(無窮遞降法)若P(n)對(duì)某個(gè)n成立可推出存在n1n,使得P(n1)成立,則P(n),還有螺旋歸納法(又叫翹翹板歸納法):設(shè)有兩個(gè)命題P(n),Q(n),若P(1)成立,又從P(k)成立可推出Q(k)成立,并且從Q(k)成立可推出P(k+1)成立,其中k為任給自然數(shù),則P(n),Q(n)對(duì)所有n都成立,若能注意運(yùn)用變形和放縮等技巧,,n有關(guān),可考慮用二重?cái)?shù)學(xué)歸納法,即若要證命題P(m,n)對(duì)所有m,n成立,可分兩步:①先證P(1,n),P(m,1)對(duì)所有m,n成立;②設(shè)P(m+1,n),P(m,n+1)成立,證明P(m+1,n+1),數(shù)學(xué)歸納法與其它方法的綜合運(yùn)用,例如,證明n229。188。 證: 設(shè)A=180。,所以,且當(dāng) 163。44a+1+294=2a+13 注意到對(duì)稱有:94(a+b+c+d)+1317(4a+1+4b+1+4c+1+4d+1)163。+nn2...n+1=nn+1(再變形)=2323nn11111n+1+++....+(1+1)+(1+)+....+(1+)23n=2n證:nnn+1+1n12131n第2頁(共13頁)數(shù)學(xué)系數(shù)學(xué)與應(yīng)用數(shù)學(xué)專業(yè)2009級(jí)年論文(設(shè)計(jì))2+ =1n34n+1++....+23nn234....n+1=nn+1n23n131n所以 n(n+1)n+1+++....+ 求證:1112+11+?+n(n1,n為自然數(shù))2n 分析 與自然數(shù)有關(guān)的問題,=K時(shí)成立,需證n=K+1時(shí)也成立,需證明K+K+1K+1,可采用“湊項(xiàng)”的方法: K+1KK+1+1KK+1K+11===K+1K+1K+1K+1K+111+12=2+12=2+2,右邊=2,所以, 2 證:(1)當(dāng)n=2時(shí),左邊=左邊右邊.(2)假設(shè)n=K時(shí), 1111+11+?+K成立,則當(dāng)n=K+1時(shí), 2K+1111+?++ K+K+12K+1KKK+1+1K+1 =KK+1K+1=K+1=K+1K+1綜上所述: (1)利用特殊值證明不等式11+11+?+n 2n特殊性存在于一般規(guī)律之中,(共13頁)數(shù)學(xué)系數(shù)學(xué)與應(yīng)用數(shù)學(xué)專業(yè)2009級(jí)年論文(設(shè)計(jì)) 已知ab,b0,a+b=(a+)(b+)≥185。2平方添項(xiàng)運(yùn)用此法必須注意原不等號(hào)的方向例14 :對(duì)于一切大于1的自然數(shù)n,求證:(1+13)(1+15)…(1+12n1> 2n+1 2)證明:∵b > a> 0,m> 0時(shí)ba> b+ma+m∵ [(1+13)(1+15)…(1+12n1)]2=(465…2n2n1)(465…2n2n1)>(576…2n+12n)(465…2n2n1)=2n+13> 2n+14>∴(1+13)(1+15)…(1+12n1)>2n+1 2)3平均值添項(xiàng)例15:在△ABC中,求證sinA+sinB+sinC≤332分析:∵A+B+C=π,可按A、B、C的算術(shù)平均值添項(xiàng)sin π3證明:先證命題:若x>0,y<π,
點(diǎn)擊復(fù)制文檔內(nèi)容
范文總結(jié)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1