freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

套利定價理論金融市場的套利均衡機制(留存版)

2025-04-09 09:44上一頁面

下一頁面
  

【正文】 無風險 套利機會的消失 ? 問題:大家如何看待這四只股票? ? 發(fā)現(xiàn)什么明顯的套利機會了嗎? 期望收益 % 標準差% A B C D 25 1 20 1 1 1 相關系數(shù) 股票 現(xiàn)價 美元 A 10 B 10 C 10 D 10 ? 第三節(jié) 聰明的套利交易者與無風險 套利機會的消失 ? 若構造一個由等權重的 A、 B、 C三種股票組成的資產組合,將其可能的未來回報率與第四種股票 D進行對比: ? 無論哪種情況,等權重組合的收益都比 D的高 資產 高通脹率 低通脹率 高通脹率 低通脹率 等權重組合( A、 B、 C) % % 20% % 股票 D 15% 23% 15% 36% 高實際利率 低實際利率 ? 第三節(jié) 聰明的套利交易者與無風險 套利機會的消失 ? 從而投資者只需對股票 D做空頭,然后再購買A、 B、 C的等權重的股票組合,則有 股票 投資美元 高通脹率 低通脹率 高通脹率 低通脹率 A 10萬 20萬 20萬 40萬 60萬 B 10萬 0 70萬 30萬 20萬 C 10萬 90萬 20萬 10萬 70萬 D 30萬 45萬 69萬 45萬 108萬 新組合 0 25萬 1萬 15萬 20萬 高實際利率 低實際利率 ? 第三節(jié) 聰明的套利交易者與無風險 套利機會的消失 ?結論: ?在凈投資為零的情況下,整體組合在任何環(huán)境下均可產出正利潤。 0 ZaR?? ? 如果再假設市場上存在一種無風險資產,可以自由借貸,其無風險收益率為 ,則一定有 ? 若不然,可以在該無風險資產與零因素組合之間進行套利,與市場上不存在套利的假設矛盾。 ? 特別地,當 時,如果因素的波動于市場組合的波動相反(比如存貸款利率水平),則單位風險溢價可以是負值,即一個證券或證券組合關于該因素的敏感性越高,則其期望收益率相應越低。投資者的初始財富為W0=;三種證券的統(tǒng)計結果如下表示 1i i i ir a b F e? ? ?證券 1 15 證券 2 21 證券 3 12 i ? ?%ir ib? 第三節(jié) 聰明的套利交易者與無風險 套利機會的消失 ? 問題: 1. 這些預期收益和因素敏感性是否代表一個均衡狀態(tài)? 2. 如果不是,證券價格和預期收益率將如何變化以恢復均衡狀態(tài)? ? 思路:基于上述表格數(shù)據(jù),若能夠構造出一個 套利組合 進行套利,那就說明不均衡,若不能構造 套利組合 進行套利,那就說明已經均衡了。 2 2 2 2i i F e ib? ? ???同一種商品 5英鎊 10美元 匯率 1英鎊 = 5英鎊 =8美元 ? 第三節(jié) 聰明的套利交易者與無風險 套利機會的消失 ? 套利定價模型(斯蒂芬 .羅斯 1976年) ? 三條基本假設 1. 證券收益能用因素模型表示; 2. 有足夠多的證券分散風險; 3. 市場不允許有持續(xù)的套利機會; ? 充分分散的投資組合:非因素風險對組合預期收益和收益方差的影響可以忽略不計; ? 假設兩個充分分散化的組合 A和 B,它們的因素敏感性相同,即 , 由因素模型知,它們具有相同的因素風險,再由唯一價格論知,必有 如果 ,則在任何因素值下,都存在套利收益 ; 第三節(jié) 聰明的套利交易者與無風險 套利機會的消失 pBapAa pA pBrr?pA pB?pA pB?pA pBrr?pA pBbb?? 第三節(jié) 聰明的套利交易者與無風險 套利機會的消失 ? 套利定價理論和資本資產定價模型一樣,都是證券價格的均衡模型 U S Db b b??Sr ibDUSD1?Cir 套 利 定 價 理 論 資 本 定 價 線F● ● ● ● 01pi pirb????? 第三節(jié) 聰明的套利交易者與無風險 套利機會的消失 ? 單個資產與套利定價理論 ? 單個資產的預期收益率和敏感性滿足近似線性的關系,即 ? 理解: ? 充分分散化組合的預期收益與方差之間存在線性關系; ? 充分分散化的組合意味著每個資產的權重都不會太大; ? 少數(shù)資產違反線性關系,對整個組合的線性關系影響不大; ? 若大部分資產違反線性關系,那么,組合的線性關系必然被破壞,進而會出現(xiàn)套利; ? 因此,將無套利條件加在一個單因素證券市場上,意味著線性關系對所有單個證券(少數(shù)除外)都近似成立; ? 第三節(jié) 聰明的套利交易者與無風險 套利機會的消失 ? 例 8:考慮單因素市場下的市場模型: ? 假設某個投資者擁有三種證券,每種證券的當前市值均為 4000元。 ? APT模型與 CAPM模型 ? 應用 CAPM計算因素 的單位風險溢價 的大小(注: APT中沒有給出 到底應該多大) ? 分析:由于 ? 從而有 12,??12,??? ? ? ?? ?? ?? ?? ?1111212,P f M f PPMMfMMMfME r r E r rC ov r rE r rC ov F rE r r???????
點擊復制文檔內容
教學課件相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1