freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

第2章導(dǎo)數(shù)與微分(留存版)

2025-11-10 00:39上一頁面

下一頁面
  

【正文】 . ( c o t10 ?????前頁 結(jié)束 后頁 )s i n2()s i n2(3 222 ???? xxxx)c o s4()s i n2(3 22 xxxx ???])s i n2[( 32 ???? xxy解: 22)]c o s4()s i n2(3[ 22 ?? ?? ???? xx xxxxy22)12(6 ?? ππ2,)s i n2( 32 ????? xyxxy 求設(shè)例 5 前頁 結(jié)束 后頁 22 xyx y eyex?? ??1. 隱函數(shù)的導(dǎo)數(shù) 例 9 求方程 所確定的函數(shù)的導(dǎo)數(shù) 解: 方程兩端對 x求導(dǎo)得 0)2( 2 ??????? xy eyxxyye)0( 2 ?? xe y 隱函數(shù)和由參數(shù)方程確定的函數(shù)的導(dǎo)數(shù) 隱函數(shù)即是由 所確定的函數(shù),其求導(dǎo)方法就是把 y看成 x的函數(shù),方程兩端同時對 x求導(dǎo),然后解出 。u v u v? ? ?d( ) d d 。 導(dǎo)數(shù)的概念 導(dǎo)數(shù)的運(yùn)算 微分 結(jié)束 第 2章 導(dǎo)數(shù)與微分 前頁 結(jié)束 后頁 對于勻速直線運(yùn)動來說,其速度公式為 : ? 路 程速 度 時 間一物體作變速直線運(yùn)動,物體的位置 與時間 00( ) ( )s s t t s t? ? ? ? ?的函數(shù)關(guān)系為 , 稱為位置函數(shù) ()s s t? 引例 到時刻 0tt?? s?設(shè)物體在時刻 內(nèi)經(jīng)過的路程為 0t例 1 變速直線運(yùn)動的速度. 導(dǎo)數(shù)的概念 前頁 結(jié)束 后頁 00( ) ( )s t t s tsvtt? ? ??????000 00( ) ( )( ) l im l imtts s t t s tvttt? ? ? ?? ? ? ?????0()vt瞬時速度 無限變小時,平均速度 就無限接近于 vt? 0()vt時刻的 越小 ,平均速度 就越接近于物體在 0tt? v0t0t?? 時,平均速度 的極限值就是物體在 v時刻的瞬時速度 ,即 0()vt0tt??到時刻 0t于是,物體在時刻 的平均速度為 前頁 結(jié)束 后頁 例 2 平面曲線的切線斜率 曲線 的圖像如圖所示 , 在曲線上任取兩點(diǎn) 和 , 作割線 ,割線的斜率為 )( xfy ?00()M x , y),( 00 yyxxN ????00( ) ( )t a nMNf x x f xykxx?? ? ??? ? ???MNyxO()y f x?? ?MNTx?0x xx ??0y?P前頁 結(jié)束 后頁 這里 為割線 MN的傾角,設(shè) 是切線 MT的傾角, 當(dāng) 時, 點(diǎn) N沿曲線趨于點(diǎn) M。uv v u u v??d ( ) dC u C u? ( C 為常數(shù)); 2ddd u v u u vv v??? ?????0( ).v ?前頁 結(jié)束 后頁 3.復(fù)合函數(shù)的微分法則 都是可導(dǎo)函數(shù),則 ( ) ( )y f u u x???,設(shè)函數(shù) 的微分為 )]([ xfy ??復(fù)合函數(shù) ? ?? ?d ( ) d ( ) ( ) dxy f x x f u x x??? ???? 利用微分形式不變性,可以計算復(fù)合函數(shù)和隱 函數(shù)的微分 . 這就是一階微分形式不變性 . 可見,若 y=f(u)可微,不論 u是自變量還是中間變量, d ( ) dy f u u??總有 而 d ( ) du x x? ?? uufy d)(d ??于是前頁 結(jié)束 后頁 解: )32(3221)32( 222 ??????? xxxxydd2326xx??26d d .23xyxx??解:對方程兩邊求導(dǎo),得 04222 ?????? yyyxyx)( xfy ?dy的導(dǎo)數(shù) ddyx與微分 例 5 求由方程 122 22 ??? yxyx 所確定的隱函數(shù) 即導(dǎo)數(shù)為 xyyxy???? 微分為 ddxyyxyx?? ?例 4 .,32 2 yxyxy ddd 與求設(shè) ??前頁 結(jié)束 后頁 由以上討論可以看出,微分與導(dǎo)數(shù)雖是兩個 不同的概念,但卻緊密相關(guān),求出了導(dǎo)數(shù)便立即 可得微分,求出了微分亦可得導(dǎo)數(shù),因此,通常 把函數(shù)的導(dǎo)數(shù)與微分的運(yùn)算統(tǒng)稱為微分法. 在高等數(shù)學(xué)中,把研究導(dǎo)數(shù)和微分的有關(guān)內(nèi) 容稱為微分學(xué). 前頁 結(jié)束 后頁 微分在近似計算中的應(yīng)用 0 0 0( ) ( ) d ( )y f x x f x y f x x?? ? ? ? ? ? ? ?或?qū)懗? 0 0 0( ) ( ) ( ) .f x x f x f x x?? ? ? ? ?( 1) 上式中令 00 ??? xx( 2) 0 0 0( ) ( ) ( ) ( ) .f x f x f x x x?? ? ? ?,則 特別地 ,當(dāng) x0=0, x 很小時 ,有 ( ) ( 0) ( 0)f x f f x??? ( 3) 公式 (1) (2) (3)可用來求函數(shù) f(x)的近似值。xx ?????????????或 導(dǎo)數(shù)的概念與幾何意義 前頁 結(jié)束 后頁 導(dǎo)數(shù)定義與下面的形式等價: .)()(lim)(0000 xxxfxfxfxx ?????若 y =f (x)在 x= x0 的導(dǎo)數(shù)存在,則稱 y=f(x)在點(diǎn) x0 處可導(dǎo),反之稱 y = f (x)在 x = x0 不可導(dǎo),此時意味著不存在 .函數(shù)的可導(dǎo)性與函數(shù)的連續(xù)性的概念都是描述函數(shù)在一點(diǎn)處的性態(tài),導(dǎo)數(shù)的大小反映了函數(shù)在一點(diǎn)處變化 (增大或減小 )的快慢 . 前頁 結(jié)束 后頁 左導(dǎo)數(shù)
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1