freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高中數(shù)學(xué)必修4教案(留存版)

2025-09-19 17:15上一頁面

下一頁面
  

【正文】 習(xí)引入:(1)兩個(gè)非零向量夾角的概念:已知非零向量a與b,作=a,=b,則∠AOB=θ(0≤θ≤π)叫a與b的夾角.說明:(1)當(dāng)θ=0時(shí),a與b同向;(2)當(dāng)θ=π時(shí),a與b反向;(3)當(dāng)θ=時(shí),a與b垂直,記a⊥b;(4)注意在兩向量的夾角定義,176。時(shí)投影為 |b|.3.向量的數(shù)量積的幾何意義:數(shù)量積ab等于a的長度與b在a方向上投影|b|cosq的乘積.探究:兩個(gè)向量的數(shù)量積的性質(zhì):設(shè)a、b為兩個(gè)非零向量,a^b 219。 (2)思考:在平面直角坐標(biāo)系中,每一個(gè)點(diǎn)都可以用一對有序?qū)崝?shù)表示,平面內(nèi)的每一個(gè)向量,如何表示呢? 如圖,在直角坐標(biāo)系內(nèi),我們分別取與軸、軸方向相同的兩個(gè)單位向量、由平面向量基本定理知,有且只有一對實(shí)數(shù)、使得…………我們把叫做向量的(直角)坐標(biāo),記作…………其中叫做在軸上的坐標(biāo),叫做在軸上的坐標(biāo),. 特別地,.如圖,在直角坐標(biāo)平面內(nèi),以原點(diǎn)O為起點(diǎn)作,則點(diǎn)的位置由唯一確定.設(shè),則向量的坐標(biāo)就是點(diǎn)的坐標(biāo);反過來,在平面直角坐標(biāo)系內(nèi),每一個(gè)平面向量都是可以用一對實(shí)數(shù)唯一表示.7.講解范例:例2.教材P96面的例2。 (3)將實(shí)際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型. 利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型.四、作業(yè)《習(xí)案》作業(yè)十四及十五。略解:定義域:值域:R 奇偶性:非奇非偶函數(shù)單調(diào)性:在上是增函數(shù) 練習(xí)2:教材P45面6題解:畫出y=tanx在(-,)上的圖象,在此區(qū)間上滿足tanx>0的x的范圍為:0<x<結(jié)合周期性,可知在x∈ R,且x≠kπ+上滿足的x的取值范圍為(kπ,kπ+)(k∈Z)思考2:你能用圖象求函數(shù)的定義域嗎?00TA解:由 得 ,利用圖象知,所求定義域?yàn)椋嗫衫脝挝粓A求解。 (2)正弦函數(shù)的圖形觀察函數(shù)y=sinx的圖象,當(dāng)自變量取一對相反數(shù)時(shí),它們對應(yīng)的函數(shù)值有什么關(guān)系?這個(gè)事實(shí)反映在圖象上,說明函數(shù)的圖象有怎樣的對稱性呢?函數(shù)的圖象關(guān)于原點(diǎn)對稱。f (x0)) 3176。小結(jié):sin( x 3π/2 )= sin[( x 3π/2 ) +2 π] =sin(x+π/2)=cosx這兩個(gè)函數(shù)相等,圖象重合。有時(shí),由于角的終邊位置的不確定,因此解的情況不止一種。二、講解新課: 1.三角函數(shù)定義在直角坐標(biāo)系中,設(shè)α是一個(gè)任意角,α終邊上任意一點(diǎn)(除了原點(diǎn))的坐標(biāo)為,它與原點(diǎn)的距離為,那么(1)比值叫做α的正弦,記作,即;(2)比值叫做α的余弦,記作,即;(3)比值叫做α的正切,記作,即;(4)比值叫做α的余切,記作,即;說明:①α的始邊與軸的非負(fù)半軸重合,α的終邊沒有表明α一定是正角或負(fù)角,以及α的大小,只表明與α的終邊相同的角所在的位置; ②根據(jù)相似三角形的知識,對于確定的角α,四個(gè)比值不以點(diǎn)在α的終邊上的位置的改變而改變大??;③當(dāng)時(shí),α的終邊在軸上,終邊上任意一點(diǎn)的橫坐標(biāo)都等于,所以無意義;同理當(dāng)時(shí),無意義;④除以上兩種情況外,對于確定的值α,比值、分別是一個(gè)確定的實(shí)數(shù),正弦、余弦、正切、余切是以角為自變量,比值為函數(shù)值的函數(shù),以上四種函數(shù)統(tǒng)稱為三角函數(shù)。30176。1.有向線段:坐標(biāo)軸是規(guī)定了方向的直線,那么與之平行的線段亦可規(guī)定方向。30176。<<k+180176。到360176。高中數(shù)學(xué)必修4教案.1 任意角教學(xué)目標(biāo)(一) 知識與技能目標(biāo)理解任意角的概念(包括正角、負(fù)角、零角) 與區(qū)間角的概念.(二) 過程與能力目標(biāo)會建立直角坐標(biāo)系討論任意角,能判斷象限角,會書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫.(三) 情感與態(tài)度目標(biāo)1. 提高學(xué)生的推理能力;  2.培養(yǎng)學(xué)生應(yīng)用意識.教學(xué)重點(diǎn) 任意角概念的理解;區(qū)間角的集合的書寫.教學(xué)難點(diǎn)終邊相同角的集合的表示;區(qū)間角的集合的書寫.教學(xué)過程一、引入:1.回顧角的定義①角的第一種定義是有公共端點(diǎn)的兩條射線組成的圖形叫做角.②角的第二種定義是角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形.二、新課:1.角的有關(guān)概念:①角的定義:角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形.始邊終邊頂點(diǎn)AOB②角的名稱:③角的分類:負(fù)角:按順時(shí)針方向旋轉(zhuǎn)形成的角 正角:按逆時(shí)針方向旋轉(zhuǎn)形成的角零角:射線沒有任何旋轉(zhuǎn)形成的角④注意:⑴在不引起混淆的情況下,“角α ”或“∠α ”可以簡化成“α ”;⑵零角的終邊與始邊重合,如果α是零角α =0176。范圍內(nèi),找出與下列各角終邊相等的角,并判斷它們是第幾象限角.⑴-120176。<α<k180176。45176。規(guī)定:與坐標(biāo)軸方向一致時(shí)為正,與坐標(biāo)方向相反時(shí)為負(fù)。xyoP1P21176。函 數(shù)定 義 域值 域2.三角函數(shù)的定義域、值域注意:(1)在平面直角坐標(biāo)系內(nèi)研究角的問題,其頂點(diǎn)都在原點(diǎn),始邊都與x軸的非負(fù)半軸重合.(2) α是任意角,射線OP是角α的終邊,α的各三角函數(shù)值(或是否有意義)與ox轉(zhuǎn)了幾圈,按什么方向旋轉(zhuǎn)到OP的位置無關(guān).(3)sin是個(gè)整體符號,不能認(rèn)為是“sin”與“α”.(4)任意角的三角函數(shù)的定義與銳角三角函數(shù)的定義的聯(lián)系與區(qū)別:銳角三角函數(shù)是任意角三角函數(shù)的一種特例,它們的基礎(chǔ)共建立于相似(直角)三角形的性質(zhì),“r”同為正值. 所不同的是,銳角三角函數(shù)是以邊的比來定義的,任意角的三角函數(shù)是以坐標(biāo)與距離、坐標(biāo)與坐標(biāo)、距離與坐標(biāo)的比來定義的,,由銳角三角函數(shù)的定義到任意角的三角函數(shù)的定義是由特殊到一般的認(rèn)識和研究過程.(5)為了便于記憶,我們可以利用兩種三角函數(shù)定義的一致性,將直角三角形置于平面直角坐標(biāo)系的第一象限,使一銳角頂點(diǎn)與原點(diǎn)重合,一直角邊與x軸的非負(fù)半軸重合,利用我們熟悉的銳角三角函數(shù)類比記憶.3.例題分析例1.求下列各角的四個(gè)三角函數(shù)值: (通過本例總結(jié)特殊角的三角函數(shù)值)(1); (2); (3). 解:(1)因?yàn)楫?dāng)時(shí),所以, , , 不存在。2. 解題時(shí)產(chǎn)生遺漏的主要原因是:①沒有確定好或不去確定角的終邊位置;②利用平方關(guān)系開平方時(shí),漏掉了負(fù)的平方根。例2 分別利用函數(shù)的圖象和三角函數(shù)線兩種方法,求滿足下列條件的x的集合: 三、鞏固與練習(xí)四、小 結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:1.正弦、余弦曲線 幾何畫法和五點(diǎn)法 2.注意與誘導(dǎo)公式,三角函數(shù)線的知識的聯(lián)系五、課后作業(yè):《習(xí)案》作業(yè):八、余弦函數(shù)的性質(zhì)(一)教學(xué)目的:知識目標(biāo):要求學(xué)生能理解周期函數(shù),周期函數(shù)的周期和最小正周期的定義;能力目標(biāo):掌握正、余弦函數(shù)的周期和最小正周期,并能求出正、余弦函數(shù)的最小正周期。T往往是多值的(如y=sinx 2p,4p,…,2p,4p,…都是周期)周期T中最小的正數(shù)叫做f (x)的最小正周期(有些周期函數(shù)沒有最小正周期)y=sinx, y=cosx的最小正周期為2p (一般稱為周期) 從圖象上可以看出,;,的最小正周期為;判斷:是不是所有的周期函數(shù)都有最小正周期? (沒有最小正周期)例題講解 例1 求下列三角函數(shù)的周期: ① ②(3),.解:(1)∵,∴自變量只要并且至少要增加到,函數(shù),的值才能重復(fù)出現(xiàn), 所以,函數(shù),的周期是.(2)∵,∴自變量只要并且至少要增加到,函數(shù),的值才能重復(fù)出現(xiàn),所以,函數(shù),的周期是.(3)∵,∴自變量只要并且至少要增加到,函數(shù),的值才能重復(fù)出現(xiàn),所以,函數(shù),的周期是.練習(xí)1。也就是說,如果點(diǎn)(x,y)是函數(shù)y=sinx的圖象上任一點(diǎn),那么與它關(guān)于原點(diǎn)對稱的點(diǎn)(x,y)也在函數(shù)y=sinx的圖象上,這時(shí),我們說函數(shù)y=sinx是奇函數(shù)。 四、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:,所以它的圖象被等相互平行的直線所隔開,而在相鄰平行線間的圖象是連續(xù)的。補(bǔ)充例題:一半徑為3m的水輪如右圖所示,水輪圓心O距離水面2m,已知水輪每分鐘轉(zhuǎn)動4圈,如果當(dāng)水輪上P點(diǎn)從水中浮現(xiàn)時(shí)(圖中P0)點(diǎn)開始計(jì)算時(shí)間.(1) 求P點(diǎn)相對于水面的高度h(m)與時(shí)間t(s)之間的函數(shù)關(guān)系式。8.課堂練習(xí):P100面第3題。 ab = 0當(dāng)a與b同向時(shí),ab = |a||b|; 當(dāng)a與b反向時(shí),ab = |a||b|. 特別的aa = |a|2或 |ab| ≤ |a||b| cosq = 探究:平面向量數(shù)量。思考2:已知,怎樣求的坐標(biāo)?(3) 若,則==( x2, y2) (x1,y1)= (x2 x1, y2 y1)一個(gè)向量的坐標(biāo)等于表示此向量的有向線段的終點(diǎn)坐標(biāo)減去始點(diǎn)的坐標(biāo).思考3:你能標(biāo)出坐標(biāo)為(x2 x1, y2 y1)的P點(diǎn)嗎?向量的坐標(biāo)與以原點(diǎn)為始點(diǎn)、點(diǎn)P為終點(diǎn)的向量的坐標(biāo)是相同的。(二)(教材P74面的四個(gè)圖制作成幻燈片)請同學(xué)閱讀課本后回答:(7個(gè)問題一次出現(xiàn))數(shù)量與向量有何區(qū)別?(數(shù)量沒有方向而向量有方向)如何表示向量? 有向線段和線段有何區(qū)別和聯(lián)系?分別可以表示向量的什么?長度為零的向量叫什么向量?長度為1的向量叫什么向量?滿足什么條件的兩個(gè)向量是相等向量?單位向量是相等向量嗎?有一組向量,它們的方向相同或相反,這組向量有什么關(guān)系?如果把一組平行向量的起點(diǎn)全部移到一點(diǎn)O,這是它們是不是平行向量?這時(shí)各向量的終點(diǎn)之間有什么關(guān)系? (三)探究學(xué)習(xí)A(起點(diǎn)) B(終點(diǎn))a數(shù)量與向量的區(qū)別:數(shù)量只有大小,是一個(gè)代數(shù)量,可以進(jìn)行代數(shù)運(yùn)算、比較大??;向量有方向,大小,雙重性,不能比較大小. :①用有向線段表示; ②用字母a、b(黑體,印刷用)等表示;③用有向線段的起點(diǎn)與終點(diǎn)字母:;④向量的大小―長度稱為向量的模,記作||. :具有方向的線段就叫做有向線段,三個(gè)要素:起點(diǎn)、方向、長度.向量與有向線段的區(qū)別:(1)向量只有大小和方向兩個(gè)要素,與起點(diǎn)無關(guān),只要大小和方向相同,這兩個(gè)向量就是相同的向量;(2)有向線段有起點(diǎn)、大小和方向三個(gè)要素,起點(diǎn)不同,盡管大小和方向相同,也是不同的有向線段.零向量、單位向量概念:①長度為0的向量叫零向量,記作0. 0的方向是任意的. 注意0與0的含義與書寫區(qū)別.②長度為1個(gè)單位長度的向量,叫單位向量.說明:零向量、單位向量的定義都只是限制了大小.平行向量定義:①方向相同或相反的非零向量叫平行向量;②我們規(guī)定0與任一向量平行.說明:(1)綜合①、②才是平行向量的完整定義;(2)向量a、b、c平行,記作a∥b∥c.(四)理解和鞏固: 例1 書本75頁例1.例2判斷:(1)平行向量是否一定方向相同?(不一定)(2)與任意向量都平行的向量是什么向量?(零向量)(3)若兩個(gè)向量在同一直線上,則這兩個(gè)向量一定是什么向量?(平行向量)課堂練習(xí):書本77頁練習(xí)3題三、小結(jié) : 描述向量的兩個(gè)指標(biāo):模和方向.平面向量的概念和向量的幾何表示; 向量的模、零向量、單位向量、平行向量等概念。五、作業(yè)《習(xí)案》作業(yè)十一。(1)寫出函數(shù)的對稱軸; (2)的一條對稱軸是( C )(A) x軸, (B) y軸, (C) 直線, (D) 直線思考:P46面11題。 y=sin(x+) 2176。 教學(xué)重點(diǎn):正、余弦函數(shù)的周期性教學(xué)難點(diǎn):正、余弦函數(shù)周期性的理解與應(yīng)用教學(xué)過程:一、復(fù)習(xí)引入:1.問題:(1)今天是星期一,則過了七天是星期幾?過了十四天呢?…… (2)物理中的單擺振動、圓周運(yùn)動,質(zhì)點(diǎn)運(yùn)動的規(guī)律如何呢?2.觀察正(余)弦函數(shù)的圖象總結(jié)規(guī)律:自變量––函數(shù)值 正弦函數(shù)性質(zhì)如下:(觀察圖象) 1176。當(dāng)在第一、四象限時(shí),即有,從而, ;當(dāng)在第二、三象限時(shí),即有,從而, .例已知,求 解: 強(qiáng)調(diào)(指出)技巧:1176。解:因?yàn)?,所以,于是? ;; . 例3.已知角α的終邊過點(diǎn),求α的四個(gè)三角函數(shù)值。 tana 解: 1176。2.三角函數(shù)線的定義:設(shè)任意角的頂點(diǎn)在原點(diǎn),始邊與軸非負(fù)半軸重合,終邊與單位圓相交與點(diǎn),過作軸的垂線,垂足為;過點(diǎn)作單位圓的切線,它與角的終邊或其反向延長線交與點(diǎn).(Ⅰ)(Ⅱ)(Ⅳ)(Ⅲ)由四個(gè)圖看出:當(dāng)角的終邊不在坐標(biāo)軸上時(shí),有向線段,于是有, ,我們就分別稱有向線段為正弦線、余弦線、正切線。90176。(k∈Z) .當(dāng)k為偶數(shù)時(shí),令k=2n(n∈Z),則n+270176。;⑶-950176。B2OxB3y30176。720 176。的元素β寫出來.4.課堂小結(jié)①角的定義;②角的分類:負(fù)角:按順時(shí)針方向旋轉(zhuǎn)形成的角
點(diǎn)擊復(fù)制文檔內(nèi)容
高考資料相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1