【摘要】平面幾何中幾個重要定理及其證明一、塞瓦定理1.塞瓦定理及其證明定理:在ABC內(nèi)一點P,該點與ABC的三個頂點相連所在的三條直線分別交ABC三邊AB、BC、CA于點D、E、F,且D、E、F三點均不是ABC的頂點,則有.證明:運用面積比可得.根據(jù)等比定理有,所以.同理可得,.三式相乘得.注:在運用三角形的面積比時,要把握住兩個
2025-06-19 22:03
【摘要】平面幾何四個重要定理四個重要定理:梅涅勞斯(Menelaus)定理(梅氏線)△ABC的三邊BC、CA、AB或其延長線上有點P、Q、R,則P、Q、R共線的充要條件是。塞瓦(Ceva)定理(塞瓦點)△ABC的三邊BC、CA、AB上有點P、Q、R,則AP、BQ、CR共點的充要條件是。托勒密(Ptolemy)定理四邊形的兩對邊乘積之和等于其對角線乘積的
2025-06-19 21:56
【摘要】平行判定總結一、線線平行的判定:在同一平面內(nèi),沒有公共點的兩條直線..,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行.,那么它們的交線平行..二、線面平行的判定:直線與平面無公共
2025-04-04 05:14