freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

最新中考數(shù)學(xué)-易錯易錯壓軸勾股定理選擇題專題練習(xí)(含答案)(12)(留存版)

2025-04-02 03:46上一頁面

下一頁面
  

【正文】 ∴∴故選:C.【點睛】本題考查了勾股定理、等邊三角形、圓形面積的知識;解題的關(guān)鍵是熟練掌握勾股定理、等邊三角形面積計算的性質(zhì),從而完成求解.。45176。+60176?!唷鰾PE為等邊三角形,∴PE=PB=4,∠BPE=60176。AB=6,AC=8,現(xiàn)將Rt△ABC沿BD進行翻折,使點A剛好落在BC上,則CD的長為(P是BC上一點,且DB=DC,過BC上一點P,作PE⊥AB于E,PF⊥DC于F,已知:AD:DB=1:3,BC=,則PE+PF的長是( )A. B.6 C. D.6.如圖中,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的邊長為10cm,正方形A的邊長為6cm、B的邊長為5cm、C的邊長為5cm,則正方形D的邊長為( )A.3cm B.cm C.cm D.4cm7.如圖,在中,與的平分線交于點,過點作于點,若則的長為( )A. B.2 C. D.48.如圖,在中,cm,cm,點D、E分別在AC、BC上,現(xiàn)將沿DE翻折,使點C落在點處,連接,則長度的最小值 ( )A.不存在 B.等于 1cmC.等于 2 cm D.等于 cm9.如圖,在等邊△ABC中,AB=15,BD=6,BE=3,點P從點E出發(fā)沿EA方向運動,連結(jié)PD,以PD為邊,在PD右側(cè)按如圖方式作等邊△DPF,當(dāng)點P從點E運動到點A時,點F運動的路徑長是(  )A.8 B.10 C. D.1210.如圖,小巷左右兩側(cè)是豎直的墻壁,一架梯子斜靠在左墻時,梯子底端到左墻角的距離為米,頂端距離地面米.若梯子底端位置保持不動,將梯子斜靠在右墻時,頂端距離地面米,則小巷的寬度為( )A. B. C. D.11.如圖,在△ABC中,∠BAC=90176。②。得△BEA,根據(jù)旋轉(zhuǎn)的性質(zhì)得BE=BP=4,AE=PC=5,∠PBE=60176。過D點作DE′⊥AB,過點F作FH⊥BC于H,如圖所示:則BE′=BD=3,∴點E′與點E重合,∴∠BDE=30176。2,∵AB>0,∴AB=2米,∴小巷的寬度為:+2=(米).故選:D.【點睛】本題考查的是勾股定理的應(yīng)用,在應(yīng)用勾股定理解決實際問題時勾股定理與方程的結(jié)合是解決實際問題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.11.C解析:C【分析】根據(jù)AC=2AB,點D是AC的中點求出AB=CD,再根據(jù)△ADE是等腰直角三角形求出AE=DE,并求出∠BAE=∠CDE=135176。AB=6,AC=8, ∴BC==10, 根據(jù)翻折的性質(zhì)可得A′B=AB=6,A′D=AD, ∴A′C=106=4. 設(shè)CD=x,則A′D=8x, 根據(jù)勾股定理可得x2(8x)2=42, 解得x=5, 故CD=5. 故答案為:B.【點睛】本題考察勾股定理和翻折問題,根據(jù)勾股定理把求線段的長的問題轉(zhuǎn)化為方程問題是解決本題的關(guān)鍵.16.B解析:B【分析】結(jié)論①錯誤,因為圖中全等的三角形有3對;結(jié)論②正確,由全等三角形的性質(zhì)可以判斷;結(jié)論③錯誤,利用全等三角形和等腰直角三角形的性質(zhì)可以判斷;結(jié)論④正確,利用全等三角形的性質(zhì)以及直角三角形的勾股定理進行判斷.【詳解】連接CF,交DE于點P,如下圖所示結(jié)論①錯誤,理由如下:圖中全等的三角形有3對,分別為△AFC≌△BFC,△AFD≌△CFE,△CFD≌△BFE.由等腰直角三角形的性質(zhì),可知FA=FC=FB,易得△AFC≌△BFC.∵FC⊥AB,F(xiàn)D⊥FE,∴∠AFD=∠CFE.∴△AFD≌△CFE(ASA).同理可證:△CFD≌△BFE.結(jié)論②正確,理由如下: ∵△AFD≌△CFE,∴S△AFD=S△CFE, ∴S四邊形CDFE=S△CFD+S△CFE=S△CFD+S△AFD=S△AFC=S△ABC,即△ABC的面積等于四邊形CDFE的面積的2倍.結(jié)論③錯誤,理由如下: ∵△AFD≌△CFE,∴CE=AD,∴CD+CE=CD+AD=AC=FA.結(jié)論④正確,理由如下: ∵△AFD≌△CFE,∴AD=CE;∵△CFD≌△BFE,∴BE=CD.在Rt△CDE中,由勾股定理得:,∴ .故選B.【點睛】本題是幾何綜合題,考查了等腰直角三角形、全等三角形和勾股定理等重要幾何知識點,綜合性比較強.解決這個問題的關(guān)鍵在于利用全等三角形的性質(zhì).17.A解析:A【分析】根據(jù)AC=13,AD=12,CD=5,可判斷出△ADC是直角三角形,在Rt△ADB中求出BD,繼而可得出BC的長度.【詳解】∵AC=13,AD=12,CD=5,∴,∴△ABD是直角三角形,AD⊥BC,由于點D在直線BC上,分兩種情況討論:當(dāng)點D在線段BC上時,如圖所示,在Rt△ADB中,則;②當(dāng)點D在BC延長線上時,如圖所示,在Rt△ADB中,則.故答案為:A.【點睛】本題考查勾股定理和逆定理,需要分類討論,掌握勾股定理和逆定理的應(yīng)用為解題關(guān)鍵.18.A解析:A【分析】根據(jù)勾股定理可以求得等于大正方形的面積,然后求四個直角三角形的面積,即可得到的值,然后根據(jù)即可求解.【詳解】根據(jù)勾股定理可得,四個直角三角形的面積是:,即,則.故選:A.【點睛】本題考查了勾股定理以及完全平方式,正確根據(jù)圖形的關(guān)系求得和的值是關(guān)鍵.19.D解析:D【詳解】解:∵一個直角三角形的兩邊長分別為3和5,∴①當(dāng)5是此直角三角形的斜邊時,設(shè)另一直角邊為x,則由勾股定理得到:x==4;②當(dāng)5是此直角三角形的直角邊時,設(shè)另一直角邊為x,則由勾股定理得到:x==故選:D20
點擊復(fù)制文檔內(nèi)容
黨政相關(guān)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1