freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

備戰(zhàn)中考數(shù)學(xué)培優(yōu)易錯試卷(含解析)之平行四邊形附詳細(xì)答案(留存版)

2025-04-02 00:12上一頁面

下一頁面
  

【正文】 3﹣x,由題意可知,C(0,3),M(x,0),N(4﹣x,3),P點(diǎn)坐標(biāo)為(x,3﹣x).(2)設(shè)△NPC的面積為S,在△NPC中,NC=4﹣x,NC邊上的高為,其中,0≤x≤4.∴S=(4﹣x)x=(﹣x2+4x)=﹣(x﹣2)2+.∴S的最大值為,此時x=2.(3)延長MP交CB于Q,則有PQ⊥BC.①若NP=CP,∵PQ⊥BC,∴NQ=CQ=x.∴3x=4,∴x=.②若CP=CN,則CN=4﹣x,PQ=x,CP=x,4﹣x=x,∴x=;③若CN=NP,則CN=4﹣x.∵PQ=x,NQ=4﹣2x,∵在Rt△PNQ中,PN2=NQ2+PQ2,∴(4﹣x)2=(4﹣2x)2+(x)2,∴x=.綜上所述,x=,或x=,或x=.考點(diǎn):二次函數(shù)綜合題.5.已知:如圖,在平行四邊形ABCD中,O為對角線BD的中點(diǎn),過點(diǎn)O的直線EF分別交AD,BC于E,F(xiàn)兩點(diǎn),連結(jié)BE,DF.(1)求證:△DOE≌△BOF.(2)當(dāng)∠DOE等于多少度時,四邊形BFDE為菱形?請說明理由.【答案】(1)證明見解析;(2)當(dāng)∠DOE=90176?!唷螮DF=120176。=90176。AC=4,BC=3,P為AC邊上的一動點(diǎn),以PB,PA為邊構(gòu)造□APBQ,求對角線PQ的最小值及PQ最小時的值.(1)在解決這個問題時,小明構(gòu)造出了如圖2的輔助線,則PQ的最小值為 ,當(dāng)PQ最小時= _____ __;(2)小明對問題1做了簡單的變式思考.如圖3,P為AB邊上的一動點(diǎn),延長PA到點(diǎn)E,使AE=nPA(n為大于0的常數(shù)).以PE,PC為邊作□PCQE,試求對角線PQ長的最小值,并求PQ最小時的值;問題2:在四邊形ABCD中,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3.(1)如圖4,若為上任意一點(diǎn),以,為邊作□.試求對角線長的最小值和PQ最小時的值.(2)若為上任意一點(diǎn),延長到,使,再以,為邊作□.請直接寫出對角線長的最小值和PQ最小時的值.【答案】問題1:(1)3,;(2)PQ=,=.問題2:(1)=4,.(2)PQ的最小值為..【解析】試題分析:問題1:(1)首先根據(jù)條件可證四邊形PCBQ是矩形,然后根據(jù)條件“四邊形APBQ是平行四邊形可得AP=QB=PC,從而可求的值.(2)由題可知:當(dāng)QP⊥AC時,PQ最?。^點(diǎn)C作CD⊥AB于點(diǎn)D.此時四邊形CDPQ為矩形,PQ=CD,在Rt△ABC中,∠C=90176。﹣∠3;∴△ADE≌△CDG(SAS),∴AE=CG,∠5=∠4;又∵∠5+∠6=90176?!唷鱉EC是等腰直角三角形.∵G為CM中點(diǎn),∴EG=CG,EG⊥CG【點(diǎn)睛】本題是四邊形的綜合題.(1)關(guān)鍵是利用直角三角形斜邊上的中線等于斜邊的一半解答;(2)關(guān)鍵是利用了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì)、全等三角形的判定和性質(zhì)解答.8.如圖,在平行四邊形ABCD中,AD⊥DB,垂足為點(diǎn)D,將平行四邊形ABCD折疊,使點(diǎn)B落在點(diǎn)D的位置,點(diǎn)C落在點(diǎn)G的位置,折痕為EF,EF交對角線BD于點(diǎn)P.(1)連結(jié)CG,請判斷四邊形DBCG的形狀,并說明理由;(2)若AE=BD,求∠EDF的度數(shù).【答案】(1)四邊形BCGD是矩形,理由詳見解析;(2)∠EDF=120176。﹣90176。備戰(zhàn)中考數(shù)學(xué)培優(yōu)易錯試卷(含解析)之平行四邊形附詳細(xì)答案一、平行四邊形1.如圖1,四邊形ABCD是正方形,G是CD邊上的一個動點(diǎn)(點(diǎn)G與C、D不重合),以CG為一邊在正方形ABCD外作正方形CEFG,連接BG,DE.(1)①猜想圖1中線段BG、線段DE的長度關(guān)系及所在直線的位置關(guān)系,不必證明;②將圖1中的正方形CEFG繞著點(diǎn)C按順時針方向旋轉(zhuǎn)任意角度α,得到如圖2情形.請你通過觀察、測量等方法判斷①中得到的結(jié)論是否仍然成立,并證明你的判斷.(2)將原題中正方形改為矩形(如圖4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)題①中得到的結(jié)論哪些成立,哪些不成立?若成立,以圖4為例簡要說明理由.(3)在第(2)題圖4中,連接DG、BE,且a=3,b=2,k=,求BE2+DG2的值.【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,證明見解析;(2)BG⊥DE,證明見解析;(3).【解析】分析:(1)①根據(jù)正方形的性質(zhì),顯然三角形BCG順時針旋轉(zhuǎn)90176。﹣x=180176。.【解析】【分析】(1)根據(jù)平行四邊形的性質(zhì)和折疊性質(zhì)以及矩形的判定解答即可;(2)根據(jù)折疊的性質(zhì)以及直角三角形的性質(zhì)和等邊三角形的判定與性質(zhì)解答即可.【詳解】解:(1)四邊形BCGD是矩形,理由如下,∵四邊形ABCD是平行四邊形,∴BC∥AD,即BC∥DG,由折疊可知,BC=DG,∴四邊形BCGD是平行四邊形,∵AD⊥BD,∴∠CBD=90176。∠4+∠7=180176。AC=4,BC=3,利用面積可求出CD=,然后可求出AD=, 由AE=nPA可得PE=,而PE=CQ=PD=ADAP=,所以AP=.所以=.問題2:(1)設(shè)對角線與相交于點(diǎn).Rt≌Rt.所以AD=HC,QH=AP.由題可知:當(dāng)QP⊥AB時,PQ最小,此時=CH=4,根據(jù)條件可證四邊形BPQH為矩形,從而QH=BP=AP.所以.(2)根據(jù)題意畫出圖形,當(dāng) AB時,的長最小,PQ的最小值為..試題解析:問題1:(1)3,;(2)過點(diǎn)C作CD⊥AB于點(diǎn)D.由題意可知當(dāng)PQ⊥AB時,PQ最短.所以此時四邊形CDPQ為矩形.PQ=CD,DP=CQ=PE.因?yàn)椤螧CA=90176。﹣90176?!逜B∥DC,∴∠DBC=∠DBE=60176。∴△DBI和△ABC是互補(bǔ)三角形,∴S△AEM=S△AEF=S△AFM=2,∴S△EFM=3S△ABC=6.考點(diǎn):作圖﹣應(yīng)用與設(shè)計,三角形面積3.如圖,△ABC是等邊三角形,AB=6cm,D為邊AB中點(diǎn).動點(diǎn)P、Q在邊AB上同時從點(diǎn)D出發(fā),點(diǎn)P沿D→A以1cm/s的速度向終點(diǎn)A運(yùn)動.點(diǎn)Q沿D→B→D以2cm/s的速度運(yùn)動,回到點(diǎn)D停止.以PQ為邊在AB上方作等邊三角形PQN.將△PQN繞QN的中點(diǎn)旋轉(zhuǎn)180176?!唷螧CG=∠DCE,∴△BCG≌△DCE,∴BG=DE,∠CBG=
點(diǎn)擊復(fù)制文檔內(nèi)容
法律信息相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1