freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

構(gòu)造函數(shù)處理不等式問題(專業(yè)版)

2025-11-05 14:46上一頁面

下一頁面
  

【正文】 解:設(shè)f(n)=∵f(n+1)f(n)111+++,n+1n+22n1111+=0,∴f(n)是關(guān)于n 的增函2n+12n+2n+1(2n+1)(2n+2)712∴f(n)loga(a1)+對(duì)大于1的一切自然數(shù)n恒121237121成立,必須有l(wèi)oga(a1)+∴l(xiāng)oga(a1)1,而a>1,∴a1<12123a數(shù)。22證明:∵lgx+lgy 0(x1,y1)∴原不等式可變形為:Lga≥lgx+lgylgx+lgy222lgx+lgy)2lgxlgy令 f(x)= == +222222lgx+lgylgx+lgylgx+lgylgx+lgy22而 lgx0,lgy0,∴l(xiāng)gx+lgy ≥ 2lgxlgy 0∴2lgxlgy≤1 22lgx+lgy∴ 1從而要使原不等式對(duì)于大于1的任意x與y恒成立,只需Lga≥2即 a≥102即可。0.∴4a+1+4b+1+4c+1+4d+1163。0,即:0163。:a、b、c∈R,證明:a2+ac+c2+3b(a+b+c)179。[證明]令 f(x)=x,可證得f(x)在[0,∞)上是增函數(shù)(證略)1+x 而 0得 f(∣a+b∣)≤ f(∣a∣+∣b∣)即: a+b1+a+b≤a+b1+a+b[說明]要證明函數(shù)f(x)是增函數(shù)還是減函數(shù),若用定義來證明,則證明過程是用比較法證明f(x1)與f(x2)的大小關(guān)系;反過來,證明不等式又可以利用函數(shù)的單調(diào)性。3234。(x)f(x)≤0,對(duì)任意正數(shù)a、b,若a b,則必有(A)(A)af(b)≤bf(a)(C)af(a)≤f(b)4(B)bf(a)≤af(b)(D)bf(b)≤f(a)5。(k=1n)都成立。)上,0 6122x+lnxx3 23【警示啟迪】本題首先根據(jù)題意構(gòu)造出一個(gè)函數(shù)(可以移項(xiàng),使右邊為零,將移項(xiàng)后的左式設(shè)為函數(shù)),并利用導(dǎo)數(shù)判斷所設(shè)函數(shù)的單調(diào)性,再根據(jù)函數(shù)單調(diào)性的定義,證明要證的不等式。構(gòu)造函數(shù),直接把握問題中的整體性運(yùn)用函數(shù)的性質(zhì)來解題,是一種制造性的思維活動(dòng)。(x)=2xx=xx(x1)(2x2+x+1)當(dāng)x1時(shí),F(xiàn)162。)(a)=0,ba,所以G(b)0,即g(a)+g(b)2g(3。)(B)(2,0)∪(0,2)(D)(165。當(dāng)⊿=0時(shí),b+c=0,此時(shí),f(a)=a2+ac+c2+3ab=(ac)2=0,∴a=b=c時(shí),不等式取等號(hào)。234。若采用函數(shù)思想,構(gòu)造出與所證不等式密切相關(guān)的函數(shù),利用函數(shù)的單調(diào)性來比較函數(shù)值而證之,思路則更為清新。一、結(jié)合勘根定理,利用判別式“△”的特點(diǎn)構(gòu)造函數(shù)證明不等式例1若a,b,c∈R,且a≠0,又4a+6b+c0,a3b+(x),設(shè)f(x)=ax2+3bx+c(a≠0),由f(2)=4a+6b+c0,f(1)=a3b+cf(x)+3bx+c=0可知△=(3b)24ac0,所以可得:9b2,抓住問題本質(zhì),通過構(gòu)造二次函數(shù),將所要證明的結(jié)論轉(zhuǎn)化成判別式“△”的問題,再結(jié)合勘根定理和二次函數(shù)知識(shí),、結(jié)合構(gòu)造函數(shù)的單調(diào)性證明不等式例2(2005年人教A版《選修45不等式選講》例題改編)已知a,b,c是實(shí)數(shù),求證:|a+b+c|1+|a+b+c|≤|a|1+|a|+|b|1+|b|+|c|1+|c|.證明構(gòu)造函數(shù)f(x),設(shè)f(x)=x1+x(x≥0).由于f′(x)=1(1+x)2,所以結(jié)合導(dǎo)數(shù)知識(shí)可知f(x)在[0,+∞)上是增函數(shù).∵0≤|a+b+c|≤|a|+|b|+|c|,∴f(|a+b+c|)≤f(|a|+|b|+|c|),即|a+b+c|1+|a+b+c|≤|a|+|b|+|c|1+|a|+|b|+|c|=|a|1+|a|+|b|+|c|+|b|1+|a|+|b|+|c|+|c|1+|a|+|b|+|c|≤|a|1+|a|+|b|1+|b|+|c|1+|c|.、結(jié)合構(gòu)造函數(shù)在某個(gè)區(qū)間的最值證明不等式例3(第36屆IMO試題)設(shè)a,b,c為正實(shí)數(shù),且滿足abc=1,求證:1a3(b+c)+1b3(c+a)+1c3(a+b)≥,設(shè)f(a,b,c)=1a3(b+c)+1b3(c+a)+1c3(a+b),顯然a=b=c=1時(shí),f(a,b,c)=32≥=1,a,b,c為正實(shí)數(shù),則a,b,c中必有一個(gè)不大于1,不妨設(shè)0f(a,b,c)f(a,1,c)=(1b)1a3(b+c)(1+c)+1+b+b2b3(a+c)+1c3(a+b)(1+a)≥0,∴f(a,b,c)≥f(a,1,c),因此要證f(a,b,c)≥32,只要證f(a,1,c)≥32,此時(shí)ac=1,∴a,1,c成等比數(shù)列,令a=q1,c=q(q0).f(a,1,c)=q31+q+qq2+1+1q2(1+q)=q5+1q2(1+q)+qq2+1=(q4+1)(q3+q)+q2q2+qq2+1=(q2+q2)(q+q1)+1q+q1+1=t2t+1t1.(其中t=q+q1,且t≥2).由導(dǎo)數(shù)知識(shí)(方法同例例3)可知函數(shù)f(a,1,c)=t2t+1t1(t≥2)是增函數(shù),當(dāng)且僅當(dāng)t=2
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1