freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

任意角三角函數(shù)的概念解讀(專業(yè)版)

2025-10-30 15:32上一頁面

下一頁面
  

【正文】 ctα、cscα、secα的定義寫在sinα、csα、tanα的左下方,突出本節(jié)重要內(nèi)容的主體地位。 指導(dǎo)學(xué)生根據(jù)定義自主探索確定三角函數(shù)定義域,有利于在理解的基礎(chǔ)上記住它、應(yīng)用它,也增進對三角函數(shù)概念的掌握。先由初中的直角三角形中銳角三角函數(shù)的定義,過度到直角坐標系中銳角三角函數(shù)的定義,再發(fā)展到直角坐標系中任意角三角函數(shù)的定義。三、學(xué)情分析學(xué)生已經(jīng)掌握的內(nèi)容及學(xué)生學(xué)習(xí)能力1。270176?!驹O(shè)計意圖】判斷三角函數(shù)值的正負符號,是本章教材的一項重要的知識、數(shù)形結(jié)合判斷和記憶三角函數(shù)值的正負符號,并總結(jié)出形象的“才”字符號法則,這也是理解和記憶的關(guān)鍵。用角的對邊、鄰邊、斜邊比值的說法顯然是受到阻礙了,由于前面已經(jīng)以直角坐標系為工具來研究任意角了,學(xué)生一般會想到(否則教師進行提示)繼續(xù)用直角坐標系來研究任意角的三角函數(shù)。二、教學(xué)重點、難點、關(guān)鍵教學(xué)重點:任意角的三角函數(shù)的定義,三角函數(shù)的符號規(guī)律。六、小結(jié)及作業(yè)教案設(shè)計說明:新教材的教學(xué)理念之一是讓學(xué)生去體驗新知識的發(fā)生過程,這節(jié)《任意角三角函數(shù)》的教案,主要圍繞這一點來設(shè)計。授課過程:一、引入在我們的現(xiàn)實世界中的許多運動變化都有循環(huán)往復(fù)、周而復(fù)始的現(xiàn)象,這種變化規(guī)律稱為周期性。2?!悏?書是人類進步的階梯。讀書破萬卷,下筆如有神?!喔诙骸度我饨侨呛瘮?shù)》說課稿《任意角三角函數(shù)》說課稿《任意角三角函數(shù)》說課稿1各位同仁,各位專家:我說課的課題是《任意角的三角函數(shù)》,內(nèi)容取自蘇教版高中實驗教科書《數(shù)學(xué)》第四冊 第1。精心設(shè)計例題,引出新內(nèi)容深化概念,完善定義例1已知角A 的終邊經(jīng)過P(2,—3),求角A的三個三角函數(shù)值(此題由學(xué)生自己分析獨立動手完成)例題變式1,已知角A 的大小是30度,由定義求角A的三個三角函數(shù)值結(jié)合變式我們發(fā)現(xiàn)三個三角函數(shù)值的大小與角的大小有關(guān),只會隨角的大小而變化,符合當初函數(shù)的定義,而我們又一直稱呼為三角函數(shù),提出問題:這三個新的定義確實問是函數(shù)嗎?為什么?從而引出函數(shù)極其定義域由學(xué)生分析討論,得出結(jié)論知識點二:三個三角函數(shù)的定義域同時教師強調(diào):由于弧度制使角和實數(shù)建立了一一對應(yīng)關(guān)系,所以三角函數(shù)是以實數(shù)為自變量的函數(shù)例題變式2, 已知角A 的終邊經(jīng)過P(—2a,—3a)( a不為0),求角A的三個三角函數(shù)值解答中需要對變量的正負即角所在象限進行討論, 讓學(xué)生意識到三角函數(shù)值的正負與角所在象限有關(guān),從而導(dǎo)出第三個知識點知識點三:三角函數(shù)值的正負與角所在象限的關(guān)系由學(xué)生推出結(jié)論,教師總結(jié)符號記憶方法,便于學(xué)生記憶例題2:已知A在第二象限且 sinA=0。你能從函數(shù)觀點解析三角函數(shù)嗎?(定義域)對于確定的角a,上面三個函數(shù)值都是唯一確定的,所以,正弦、余弦、正切都是以角為自變量,以單位圓上點的坐標或坐標的比值為函數(shù)值的函數(shù),我們將它們統(tǒng)稱為三角函數(shù)。三角函數(shù)的定義是在初中對銳角三角函數(shù)的定義以及剛學(xué)過的“角的概念的推廣”的基礎(chǔ)上討論和研究的。下面,為了講清重點、難點,使學(xué)生能達到本節(jié)設(shè)定的教學(xué)目標,我再從教法和學(xué)法上談?wù)劊何濉⒔虒W(xué)理念和方法教學(xué)中注意用新課程理念處理傳統(tǒng)教材,學(xué)生的數(shù)學(xué)學(xué)習(xí)活動不僅要接受、記憶、模仿和練習(xí),而且要自主探索、合作交流、師生互動,教師發(fā)揮組織者、引導(dǎo)者、合作者的作用,引導(dǎo)學(xué)生主體參與、揭示本質(zhì)、經(jīng)歷過程。(三)鞏固新知——探求規(guī)律為了使學(xué)生達到對知識的深化理解,進而達到鞏固提高的效果,求的六個三角函數(shù)值要求:讀完題目,思考:計算什么?需要準備什么?閉目心算,對照板書,模仿書面表達格式。結(jié)論是:比值隨α的變化而變化.引導(dǎo)學(xué)生觀察圖3,聯(lián)系相似三角形知識,探索發(fā)現(xiàn):對于銳角α的每一個確定值,六個比值都是確定的,不會隨P在終邊上的移動而變化.得出結(jié)論(強調(diào)):當α為銳角時,六個比值隨α的變化而變化;但對于銳角α的每一個確定值,六個比值都是確定的,六個比值分別是以角α為自變量、以比值為函數(shù)值的函數(shù).設(shè)計意圖:初中學(xué)生對函數(shù)理解較膚淺,這里在學(xué)生思維的最近發(fā)展區(qū)進一步研究初中學(xué)過的銳角三角函數(shù),在思維上更上了一個層次,扣準函數(shù)概念的內(nèi)涵,突出變量之間的依賴關(guān)系或?qū)?yīng)關(guān)系,是從函數(shù)知識演繹到三角函數(shù)知識的主要依據(jù),是準確理解三角函數(shù)概念的關(guān)鍵,.(三)分析歸納、自主定義(情境5)能將銳角的比值情形推廣到任意角α嗎?水到渠成,師生共同進行探索和推廣:對于一個任意角α,它的終邊所在位置包括下列兩類共八種情形(投影展示并作分析):終邊分別在四個象限的情形:終邊分別在四個半軸上的情形:;(指出:不畫出角的方向,表明角具有任意性)怎樣刻畫任意角的三角函數(shù)呢?研究它的六個比值:(板書)設(shè)α是一個任意角,在α終邊上除原點外任意取一點P(x,y),P與原點o之間的距離記作r(r=>0),列出六個比值:α=kππ/2時,x=0,比值y/x、r/x無意義;α=kπ時,y=0,比值x/y、r/y無意義.追問:α大小發(fā)生變化時,比值會改變嗎?先讓學(xué)生想象思考,作出主觀判斷,再用幾何畫板動畫演示,同時作好解釋說明:使r保持不變,P繞原點o逆時針、順時針旋轉(zhuǎn)即角α變化,六個比值隨之改變的直觀形象。 三角函數(shù)的定義在教材中起著承前啟后的作用,一方面,通過這部分內(nèi)容的學(xué)習(xí),可以幫助學(xué)生更加深入理解函數(shù)這一基本概念,另一方面它又為平面向量、解析幾何等內(nèi)容的學(xué)習(xí)作必要的準備。基礎(chǔ)知識目標:使學(xué)生正確理解任意角的正弦、余弦、正切的定義,了解余切、正割、余割的定義;2。得出結(jié)論(強調(diào)):當α為銳角時,六個比值隨α的變化而變化;但對于銳角α的每一個確定值,六個比值都是確定的,不會隨P在終邊上的移動而變化。等待學(xué)生基本理解和掌握三角函數(shù)定義后,觀察、分析初、高中所計算的函數(shù)值有何變化,讓學(xué)生意識到三角函數(shù)值的正負與角所在象限有關(guān), 然后引導(dǎo)學(xué)生緊緊抓住三角函數(shù)定義來分析,從而導(dǎo)出三角函數(shù)值的正負與角所在象限的關(guān)系,進而由教師總結(jié)符號記憶方法,便于學(xué)生記憶。內(nèi)的角,再擴充到任意角,相應(yīng)地,銳角三角函數(shù)概念也必須有所擴充.任意角三角函數(shù)概念的出現(xiàn)是角的概念擴充的必然結(jié)果.比較銳角三角函數(shù)與任意角三角函數(shù)這兩個概念,共同點是,它們都是“比值”,不同點是銳角三角函數(shù)是“線段長度的比值”,而任意角三角函數(shù)是直角坐標系中“坐標與長度的比值,或者是坐標的比值”.正是由于“比值”這一與在角的終邊上所取點的位置無關(guān)的特點,因此,可以用角的終邊與單位圓的交點的坐標(或坐標的比值)來表示任意角的三角函數(shù),這是概念的核心.這樣定義,不僅簡化了任意角三角函數(shù)的表示,也為后續(xù)研究它的性質(zhì)帶來了方便.從銳角三角函數(shù)到任意角三角函數(shù)類似于從自然數(shù)到整數(shù)擴充的過程,產(chǎn)生了“符號問題”.因此,學(xué)習(xí)任意角三角函數(shù)可以與銳角三角函數(shù)相類比,借助銳角三角函數(shù)的概念建立起任意角三角函數(shù)的概念.任意角三角函數(shù)概念的重點是任意角的正弦、余弦、正切的定義.它們是本節(jié),乃至本章的基本概念,是學(xué)習(xí)其他與三角函數(shù)有關(guān)內(nèi)容的基礎(chǔ),具有根本的重要的作用.解決這一重點的關(guān)鍵,是學(xué)會用直角坐標系中,角的終邊上的點的坐標來表示三角函數(shù).因為正切函數(shù)并不獨立,最主要的是正弦函數(shù)與余弦函數(shù).任意角三角函數(shù)自然具有函數(shù)的一切特征,有它的定義域,對應(yīng)法則以及值域.任意角三角函數(shù)的定義域是實數(shù)集(或它的子集),這是因為,在建立弧度制以后,角的集合與實數(shù)集合間建立了一一對應(yīng)關(guān)系,從這個意義上說,“角是實數(shù)”,三角函數(shù)是定義在實數(shù)集上的函數(shù).各種不同的三角函數(shù)定義了不同的對應(yīng)法則,因而可能有不同的定義域與值域.任意角三角函數(shù)概念是核心概念,它是解決一切三角函數(shù)問題的基點.無論是研究三角函數(shù)在各象限中的符號、特殊角的三角函數(shù)值,還是同角三角函數(shù)間的關(guān)系,以及三角函數(shù)的性質(zhì),等等,都具有基本的重要的意義.在建立任意角三角函數(shù)這個定義的過程中,學(xué)生可以感受到數(shù)與形結(jié)合,以及類比、運動、變化、對應(yīng)等數(shù)學(xué)思想方法. 二.目標和目標解析本節(jié)課的目標是,理解任意角三角函數(shù)(正弦、余弦、正切)的定義.學(xué)生已經(jīng)學(xué)習(xí)過銳角三角函數(shù)sinα,cosα,tanα,了解三角函數(shù)是直角三角形中邊長的比值,這個比值僅與銳角的大小有關(guān),是隨著銳角取值的變化而變化的,其值是惟一確定的,等函數(shù)的要素.這是任意角三角函數(shù)概念的“生長點”.理解任意角三角函數(shù)(正弦、余弦、正切)定義的關(guān)鍵是由銳角三角函數(shù)這個線段長度的比值擴展為點的坐標或坐標的比值.因此,對銳角三角函數(shù)理解得怎樣,對理解任意角三角函數(shù)有決定意義,復(fù)習(xí)銳角三角函數(shù),加深對銳角三角函數(shù)的理解是必要的.要實現(xiàn)讓學(xué)生“理解”任意角三角函數(shù)定義的教學(xué)目標,莫過于讓學(xué)生參與任意角三角函數(shù)定義的過程.讓學(xué)生感受到因角的概念的擴展,銳角三角函數(shù)概念擴展的必要性,任意角三角函數(shù)是銳角三角函數(shù)概念的自然延伸.反過來,既然銳角集合是任意角集合的子集,那么,銳角三角函數(shù)也應(yīng)該是任意角三角函數(shù)的特殊情況,是一個包含關(guān)系.讓學(xué)生參與定義,可以感受到這樣定義的合理性,感受到這個定義是自然的.三.教學(xué)問題診斷分析從銳角三角函數(shù)到任意角三角函數(shù)的學(xué)習(xí),從認知結(jié)構(gòu)發(fā)展的角度來說,是屬于“下、上位關(guān)系學(xué)習(xí)”,是一個從特殊到一般的過程,“先行組織者”是銳角三角函數(shù)的概念.教學(xué)策略上先復(fù)習(xí)包容性小、抽象概括程度低的銳角三角函數(shù)的概念,然后讓學(xué)生“再創(chuàng)造”抽象程度高的上位概念(參與定義),并形成新的認知結(jié)構(gòu),讓原有的銳角三角函數(shù)的概念類屬于抽象程度更高的任意角三角函數(shù)的概念之中.學(xué)生過去在直角三角形中研究過銳角三角函數(shù),這對研究任意角三角函數(shù)在認識上會有一定的局限性,所以學(xué)生在用角的終邊上的點的坐標來研究三角函數(shù)可能會有一定的困難.可以讓學(xué)生在原有的對銳角三角函數(shù)的幾何認識的基礎(chǔ)上,嘗試讓學(xué)生建立用終邊上的點的坐標定義任意角三角函數(shù),或者嘗試用終邊上的點的坐標定義銳角三角函數(shù),然后再定義任意角的三角函數(shù).教學(xué)的另一個難點是,任意角三角函數(shù)的定義域是實數(shù)集(或它的子集).因為學(xué)生剛剛接觸弧度制,未必能理解“把角的集合與實數(shù)集建立一一對應(yīng)”到底是為了什么.可以在復(fù)習(xí)銳角三角函數(shù)時,把銳角說成區(qū)間(0,四.教學(xué)支持條件分析利用幾何畫板軟件,可以動態(tài)改變角的終邊位置,從而改變角的終邊上點的坐標大小的特點,便于學(xué)生認識任意角的位置的改變,所對應(yīng)的三角函數(shù)值也改變的特點,感受函數(shù)的本質(zhì);感受終邊相同的角具有相同的三角函數(shù)值;也便于觀察各三角函數(shù)在各象限中符號的變化情況,加深對任意角三角函數(shù)概念的理解,增強教學(xué)效果.)內(nèi)的角,以便分散這個難點. 五.教學(xué)過程設(shè)計 1.理解銳角三角函數(shù)要理解任意角三角函數(shù)首先要理解銳角三角函數(shù).銳角三角函數(shù)是任意角三角函數(shù)的先行組織者.問題1 任意畫一個銳角α,借助三角板,找出sinα,cosα,tanα的近似值.教師用幾何畫板任意畫一個銳角.要求學(xué)生自己任意也畫一個銳角,利用手中的三角板畫直角三角形,度量角α的對邊長、斜邊長,計算比值.意圖:復(fù)習(xí)初中所學(xué)習(xí)過的銳角三角函數(shù),加深對銳角三角函數(shù)概念的理解,它是學(xué)習(xí)任意角三角函數(shù)的基礎(chǔ).突出:(1)與點的位置的選取無關(guān);(2)是直角三角形中線段長度的比值. 問題2 能否把某條線段畫成單位長,有些三角函數(shù)值不用計算就可以得到?意圖:學(xué)生根據(jù)自己實際畫圖操作,以及計算比值的體驗,會很快認為把斜邊畫成單位長比較方便,為后續(xù)任意角三角函數(shù)的“單位圓定義法”做鋪墊.問題3 銳角三角函數(shù)sinα作為一個函數(shù),自變量以及與之對應(yīng)的函數(shù)值分別是什么?意圖:以便與后面的任意角三角函數(shù)的自變量是角(的弧度,對應(yīng)一個實數(shù)),對應(yīng)的函數(shù)值是α的終邊與單位圓交點的縱坐標比較.銳角三角函數(shù)sinα作為一個函數(shù),自變量是銳角.由于角的弧度值與實數(shù)可以一一對應(yīng),所以,α是(0,)上的實數(shù).而與之對應(yīng)的函數(shù)值sinα是線段長度的比值,是區(qū)間(0,1)上的實數(shù).問題4 你產(chǎn)生過這個疑問嗎:“三角函數(shù)只有這三個?”意圖:這個問題具有元認知提示的特點,引導(dǎo)學(xué)生勤于思考,逐步學(xué)會發(fā)現(xiàn)問題、提出問題、研究問題.三條邊相互比,可以產(chǎn)生六個比.還有哪三個呢?再把已知的三個倒過來. 2.任意角三角函數(shù)定義的“再創(chuàng)造”教師利用幾何畫板,把角α的頂點定義為原點,一邊與x軸的正半軸重合,轉(zhuǎn)動另一條邊,表現(xiàn)任意角.問題5 現(xiàn)在,角的范圍擴大了.在直角坐標系中,使得角的頂點在原點,始邊與x軸的正半軸重合.在這樣的環(huán)境下,你認為,對于任意角α,sinα,cosα,tanα怎樣來定義好呢?意圖:可以打破知識結(jié)構(gòu)的平衡,感受到學(xué)習(xí)新知識的必要性——角的范圍擴大了,銳角三角函數(shù)也應(yīng)該“與時俱進”,并不顯得突然.把定義的主動權(quán)交給學(xué)生,引導(dǎo)學(xué)生參與定義過程,發(fā)展思維.有兩種可能的回答.可能一:在α的終邊上任意畫一點P(x,y),|OP|=r.可能二:設(shè)角α的終邊與單位圓的交點為P(x,y).不論出現(xiàn)可能一還是可能二,都再問:“都是這樣的嗎?”引導(dǎo)學(xué)生議論,以確認兩種定義方法的一致性、各自特點.再問“你贊成哪一種?”,統(tǒng)一認識,建立任意角三角函數(shù)的定義.(板書)因為前面已經(jīng)有引導(dǎo),學(xué)生可能很快接受“可能二”. 3.任意角三角函數(shù)的認識(對定義的體驗)問題6(1)求下列三角函數(shù)值:問題6(2)說出幾個使得cosα=1的α的值. 意圖:通過定義的簡單應(yīng)用,把握定義的內(nèi)涵.逐題給出,對于每一個答案,都要求學(xué)生說出“你是怎樣得到的.”突出“畫終邊,找交點坐標,算比值(對正切函數(shù))”的步驟.問題6(3)指出下列函數(shù)值:意圖:角的終邊位置決定了三角函數(shù)值的大?。K邊位置相同的角同一三角函數(shù)值相等.于是有 sin(α+2kπ)=sinα,cos(α+2kπ)=cosα,tan(α+2kπ)=tanα.(其中k∈Z)問題6(4)①確定下列三角函數(shù)的符號:②θ在哪個象限?請說明理由.反過來呢?③角α的哪些三角函數(shù)值在第二、三象限都是負數(shù)?為什么? ④tanα在哪些象限中取正數(shù)?為什么? 意圖:認識三角函數(shù)在各象限中的符號.問題7 做了這么多題,要反思.你是否發(fā)
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1