freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

半?yún)?shù)核估計理論及應(yīng)用畢業(yè)論文(專業(yè)版)

2025-09-10 21:19上一頁面

下一頁面
  

【正文】 167。 167。 在一般的實際問題中, 設(shè)概率權(quán)函數(shù) 。 在國內(nèi), 洪圣巖對如何在核估計中選取最佳窗寬做了研究;薛留根對密度函數(shù)核估計進(jìn)行了相關(guān)問題的研究; 趙林城( 1984)將核估計同近鄰估計進(jìn)行了對比,并且通過 ? 的自適應(yīng)估計最終可以得到最優(yōu)收斂速度; 秦更生對隨機(jī)刪失場合中的部分線性模型的核光滑方法進(jìn)行了研究;王啟華對隨機(jī)刪失情況下概率密度核估計中的光滑 Bootstrap 逼近進(jìn)行了分析; 朱仲義、李朝暉對最小二乘估計與半?yún)?shù)函數(shù)模型的核進(jìn)行了研究 。為了彌補(bǔ)參數(shù)和非參數(shù)模型的各自不足,測繪學(xué)界又將統(tǒng)計領(lǐng)域中的偏線性回歸模型引入到測量數(shù)據(jù)處理中,這就是現(xiàn)在的半?yún)?shù)平差模型,并取得了顯著的研究成果。我國對于半?yún)?shù)回歸的研究,主要在統(tǒng)計領(lǐng)域內(nèi),其中主要研究內(nèi)容包括: 洪圣巖 [13]對于半?yún)?shù)回歸模型中的一系列估計理論做了研究 ;柴根象和孫平 [14]對于大樣本估計的性質(zhì)和半?yún)?shù)中估計量的性質(zhì)做了研究;朱仲義( 1999) [15]用統(tǒng)計的方法對于半?yún)?shù)非線性模型做了系統(tǒng)的研究;曾林蕊( 20xx) [18]對廣義的半?yún)?shù)模型中的統(tǒng)計診斷方法做了研究;其中,柴根象、洪圣巖( 1995) [17]的著作 《半?yún)?shù)回歸模型》對于半?yún)?shù)中的理論與方法做了系統(tǒng)的介紹和研究。 半?yún)?shù)核估計理論 ........................................................................................... 6 167。 第二章主 要研究半?yún)?shù)核估計的理論,包括核權(quán)函數(shù)和核函數(shù)的選取問題;介紹了核估計的兩種方法,即最小二乘核估計和偏核光滑估計,分析了這兩種方法的各自特點,并解算了其參數(shù)和非參數(shù)分量;同時討論了窗寬參數(shù) h 在核估計中的重要作用,在小樣本估計中,樣本的大小,核函數(shù)的選取以及窗寬參數(shù)共同決定了核估計性能的好壞。本文主要 研究半?yún)?shù)的最小二乘核估計和偏核光滑估計,通過解算其參數(shù)分量和非參數(shù)分量及推導(dǎo)其期望、偏差、方差及均方誤差等統(tǒng)計性質(zhì),研究窗寬參數(shù)的選取,并通過模擬算例證 明和對比最小二乘核估計和偏核光滑估計各自在參數(shù)和非參數(shù)分量估計以及估計系統(tǒng)誤差等方面的有效性和可行性 ,并將半?yún)?shù)核估計應(yīng)用到平面坐標(biāo)轉(zhuǎn)換中。 highlights the semiparametric estimation theoretical aspects of kernel research at home and abroad ,and the contents of this paper are: semiparametric kernel estimation including migraine kernel smooth estimation, partial residuals estimated neighbor kernel estimation, least squares estimation and NW kernel estimation, this paper mainly studies migraine kernel smooth estimation and least squares estimation. The second chapter studies the theory of semiparametric kernel kernel weight functions and kernel function selection two kernel estimation method, namely migraine kernel smooth estimation and least squares estimation,analysis of the characteristics of each of these two methods,and extract fet their parametric and nonparametric a small sample estimates, the sample size, the selection of kernel function and window width parameters together determine the kernel estimation performance , numerical examples demonstrates that the ponent parameters of two methods is correct and we pare the result. The third chapter is to derive a semiparametric kernel estimation (parametric and nonparametric ponent ponent) of the statistical properties, according to which We can infer the scope of application of the properties includes its estimated expectation, variance, bias, mean square error. It also discusses the problem of the window width parameter selection, window width is an important parameter smoothing parameter, It Plays a balancing role on the degree of curve fitting and smoothness,in fact, it is to play a role as a smoothing factor,that it is good or not influences the properties of the estimation,.The smaller Window width is, the smaller the kernel estimation bias is, but the greater estimates of the variance is. In the window width parameter selection, we discuss minimum mean square error method and classic GCV method and so window width changes, it is impossible to make kernel estimation bias and variance simultaneously smaller. Therefore, the optimal window width selection criteria must be balanced in the kernel tradeoff between bias and variance. This chapter provides an overview of the measurement error and introduces the related characteristics of systematic errors . Through simulation examples and examples of measurements, it Proves that semiparametric kernel estimation is feasible in removing outliers and separating system the semiparametric kernel estimation theory to the gravity measurements,through the practical examples given in this chapter, we prove that kernel estimation is effective in Coordinate transformation. KeyWords: Semiparametric model, Kernel estimation,Statistical properties,Systematic errors, Coordinate transformation 目錄 第一章 緒論 .................................................................................................................. 1 167。rdle,Mammenamp。綜上所述,對不同的平差模型進(jìn)行深入研究,更加精確地解算觀測量的最佳估值是現(xiàn)代測量數(shù)據(jù)處理中的基本首要內(nèi)容。由以上內(nèi)容分析可知,半?yún)?shù)平差模型的兩個特例是參數(shù)平差模型與非參數(shù)平差模型,當(dāng) 0B? 時為非參數(shù)平差模型,將 S 歸入誤差項則為參數(shù)平差模型 。模型為( 19),則 )(its 的權(quán)函數(shù)估計 )(iWtS 可表示為: )(iWtS =ikni i LtW )(? 其中 )(ki tW 為權(quán)函數(shù),設(shè) ),。單從定義式來看,核估計在每一個觀察點iX 都會一個“碰撞”。在第二章中,不管是通過理論推導(dǎo)還是算例,都證明窗寬參數(shù)的選取的恰當(dāng)與否直接影響了估計結(jié)果的準(zhǔn)確度和精確度,因此,在半?yún)?shù)核估計中,窗寬參數(shù)的選取很重要。 由 所計算的半?yún)?shù)的兩種核估計的期望可知,這兩種核估計的非參數(shù)分量和參數(shù)分量的結(jié)果都是有偏的。 167。1( : ,... ) 0hn i nW t t t ?, 。 半?yún)?shù)核估計理論 目前,研究半?yún)?shù)平差模型的主要方法有偏樣條估計、最小二乘估計、分塊多項式估計、二階段估計、多項式估計、三角級數(shù)估計、小波估計等,但是目前只有張松林 [26]、丁士俊 [25]等對于半?yún)?shù)平差模型中的核估計進(jìn)行了研究。 當(dāng)今統(tǒng)計界對半?yún)?shù)模型的估計方法研究得較多的主要有樣條估計,最小二乘核估計,三角級數(shù)估計和分塊多項式估計,而且參數(shù)部分的模型只適用于線性函數(shù)模型,對于非線性模型研究得較少。 近些年來學(xué)者將半?yún)?shù)模型應(yīng)用到在測繪領(lǐng)域,利用半?yún)?shù)回歸模型來解決實際測量數(shù)據(jù)中含有系統(tǒng)信號的問題,與參數(shù)平差模 型、非參數(shù)平差模型相比,半?yún)?shù)平差模型能利用其參數(shù)信號和非參數(shù)信號解決參數(shù)平差模型、非參數(shù)平差模型等單一解決方法不能解決的實際問題,并且所得的估計量效果要好一些。 最小二乘核估計估計量的性質(zhì) ....................................................................... 12 167。窗寬 h 越小,則核估計的偏差越小,但估計的方差卻越大。大量的研究表明半?yún)?shù)模型在處理觀測量與待估參數(shù)之間的復(fù)雜關(guān)系時有很明顯的優(yōu)點,因此在很多領(lǐng)域得到了研究與應(yīng)用。 關(guān)鍵詞:半?yún)?shù)模型,核估計,統(tǒng)計性質(zhì),系統(tǒng)誤差,坐標(biāo)轉(zhuǎn)換 Abstract The rapid development of modern science and technology not only provides a good opportunity for the development of surveying and mapping science, but also a higher requirement on Surveying and Mapping .First, as the development of modern measuring instruments and the plexity of observational data ,the precision of the measurement data processing bees increasingly demanding, but the entire survey adjustment system is determined by numerous factors, some of which affect the observation function not plex observational data lead classical least squares criterion to failure, resulting in some systematic error can not be eliminated and so on. Semiparametric model contains a parameter ponent and a nonparametric ponent, for a function with the observed values of the parameters of the known part of the presquares estimation taken a similar approach, some parameters about which fully parameterized。目前,一些學(xué)者對半?yún)?shù)模型
點擊復(fù)制文檔內(nèi)容
研究報告相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1