【摘要】章末檢測一、選擇題1.物體運(yùn)動的方程為s=14t4-3,則t=5時的瞬時速度為()A.5B.25C.125D.6252.函數(shù)y=x2cosx的導(dǎo)數(shù)為()A.y′=2xcosx-x2sinxB.y′=2xcosx+x
2025-11-10 10:30
【摘要】已知方程表示焦點(diǎn)在x軸上的橢圓,則m的取值范圍是.22xy+=14m(0,4)變式:已知方程表示焦點(diǎn)在y軸上的橢圓,則m的取值范圍是.22xy+=1m
2025-11-09 08:56
【摘要】幾種常見函數(shù)的導(dǎo)數(shù)一、復(fù)習(xí),過曲線某點(diǎn)的切線的斜率的精確描述與求值;物理學(xué)中,物體運(yùn)動過程中,在某時刻的瞬時速度的精確描述與求值等,都是極限思想得到本質(zhì)相同的數(shù)學(xué)表達(dá)式,將它們抽象歸納為一個統(tǒng)一的概念和公式——導(dǎo)數(shù),導(dǎo)數(shù)源于實踐,又服務(wù)于實踐.:(1)()
2025-11-09 12:15
【摘要】雙曲線的性質(zhì)(一)222bac??定義圖象方程焦點(diǎn)的關(guān)系||MF1|-|MF2||=2a(02a|F1F2|)F(±c,0)F(0,±c)12222??byax12
2025-11-09 08:47
【摘要】《雙曲線的簡單幾何性質(zhì)》教學(xué)目標(biāo)?知識與技能目標(biāo)?了解平面解析幾何研究的主要問題:(1)根據(jù)條件,求出表示曲線的方程;(2)通過方程,研究曲線的性質(zhì).理解雙曲線的范圍、對稱性及對稱軸,對稱中心、離心率、頂點(diǎn)、漸近線的概念;掌握雙曲線的標(biāo)準(zhǔn)方程、會用雙曲線的定義解決實際問題;通過例題和探究了解雙曲線的第二定義,準(zhǔn)線及焦半徑的概念,利用信
【摘要】基本初等函數(shù)的導(dǎo)數(shù)公式及導(dǎo)數(shù)的運(yùn)算法則基本初等函數(shù)的導(dǎo)數(shù)公式:11.(),'()0;2.(),'();3.()sin,'()cos;4.()cos,'()sin;5.(),'()ln(0);6.(),'(
2025-11-08 12:02