【摘要】第一課時1、1集合的概念(一)集合一、學習目標1、理解集合的意義,會判斷一組對象是否組成集合;掌握元素與集合的關系的表示法以及集合中元素的特性。2、初步知道集合的表示法,能正確使用常用數(shù)集的名稱及其符號。二、例題析解例1判斷下列各組對象能否描述為集合,若能,則
2025-10-31 09:17
【摘要】第3講函數(shù)的性質理解函數(shù)的單調性及其幾何意義,掌握判斷函數(shù)單調性的基本方法,并能利用函數(shù)的單調性解題,掌握函數(shù)奇偶性的判定方法及圖象特征,并能運用這些知識分析、解決問題.因為奇、偶函數(shù)的定義域關于原點對稱,所以p+q=0.?f(x)的定義域是[p,q
2025-10-31 04:47
【摘要】直線的一般式方程㈠復習提問:①直線方程有幾種形式?點斜式:已知直線上一點P1(x1,y1)的坐標,和直線的斜率k,則直線的方程是斜截式:已知直線的斜率k,和直線在y軸上的截距b則直線方程是兩點式:已知直線上兩點P1(x1,y1),P2(x2,y2)則直線的方程是:截距式:已知直線在X軸Y軸上的截距
2025-11-03 01:34
【摘要】第7節(jié)函數(shù)的圖象(對應學生用書第23頁)(對應學生用書第23~24頁)1.利用描點法作函數(shù)圖象其基本步驟是列表、描點、連線,首先:①確定函數(shù)的定義域;②化簡函數(shù)解析式;③討論函數(shù)的性質(奇偶性、單調性、周期性、對稱性等);其次:列表(尤其注意
2025-11-03 01:38
【摘要】幾種常見函數(shù)的導數(shù)一、復習,過曲線某點的切線的斜率的精確描述與求值;物理學中,物體運動過程中,在某時刻的瞬時速度的精確描述與求值等,都是極限思想得到本質相同的數(shù)學表達式,將它們抽象歸納為一個統(tǒng)一的概念和公式——導數(shù),導數(shù)源于實踐,又服務于實踐
2025-11-02 21:10
【摘要】一、配方法形如y=af2(x)+bf(x)+c(a≠0)的函數(shù)常用配方法求函數(shù)的值域,要注意f(x)的取值范圍.例1(1)求函數(shù)y=x2+2x+3在下面給定閉區(qū)間上的值域:二、換元法通過代數(shù)換元法或者三角函數(shù)換元法,把無理函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)等超越函數(shù)轉化為代數(shù)函數(shù)來求函數(shù)值域的方
2025-11-02 21:11