【正文】
€”must be credited to the 20th century. When human intelligence is disciplined by the analytical methods of modern science, and fortified by modern material resources and techniques, it can transform almost beyond recognition the most familiar aspects of the physical and social scene. There is surely a profound difference between a primitive recognition that some mechanisms are selfregulative while others are not, and the invention of an analytic theory which not only accounts for the gross facts but guides the construction of new types of systems. We now possess at least a first approximation to an adequate theory of automatic control, and we are at a point of history when the practical application of that theory begins to be conspicuous and widely felt. The future of automatic control, and the significance for human weal or woe of its extension to fresh areas of modern life, are still obscure. But if the future is not to take us pletely by surprise, we need to survey, as this issue of Scientific American does, the principal content of automatic control theory, the problems that still face it and the role that automatic control is likely to play in our society.THE CENTRAL ideas of the theory of selfregulative systems are simple and are explained with exemplary clarity in Mr. Tustin’s essay which follows. Every operating system, from a pump to a primate, exhibits a characteristic pattern of behavior, and requires a supply of energy and a favorable environment for its continued operation. A system will cease to function when variations in its intake of energy or changes in its external and internal environment bee too large. What distinguishes an automatically controlled system is that it possesses working ponents which maintain at least some of its typical processes despite such excessive variations. As need arises, these ponents employ a small part of the energy supplied to the system to augment or diminish the total volume of that energy, or in other ways to pensate for environmental changes. Even these elementary notions provide fruitful clues for understanding not only inanimate automatically controlled systems, but also organic bodies and their interrelations. There is no longer any sector of nature in which the occurrence of selfregulating systems can be regarded as a theme for oracular mysterymongering. However, some systems permit a greater degree of automatic control than others. A system’s susceptibility to control depends on the plexity of its behavior pattern and on the range of variations under which it can maintain that pattern. Moreover, responses of automatic controls to changes affecting the operation of a system are in practice rarely instantaneous, and never absolutely accurate. An adequate science of automatic control must therefore develop prehensive ways of discriminating and measuring variations in quality。 plot(t,y,t,u,39。 原系統(tǒng)的Simulink系統(tǒng)模型;圖51 圖52 原系統(tǒng)在5+t作用下的響應校正后系統(tǒng)的Simulink系統(tǒng)模型;圖53 圖54 校正后系統(tǒng)在5+t作用下的曲線校正前系統(tǒng)在輸入信號5+t作用下的響應曲線:t=0::10。一般情況下,矩陣類計算可以達到10~15數(shù)量級的精度,符合一般科學與工程運算的要求。本系統(tǒng)將采用物理仿真及其軟件MATLAB的使用對原系統(tǒng)進行仿真。滯后網(wǎng)絡將使系統(tǒng)帶寬降低,交界頻率左移,從而使系統(tǒng)的瞬態(tài)響應變慢;滯后校正引入一個滯后的相位,故有降低系統(tǒng)穩(wěn)定性的趨向。系統(tǒng)對于給定的信號能夠跟蹤還是不能跟蹤,有差跟蹤還是無差跟蹤等,是有系統(tǒng)的無差度來決定的。頻率特性G(jw)是輸入信號頻率w的復變函數(shù),系統(tǒng)的頻率特性表示為極坐標圖是當頻率從連續(xù)變化時,G(jw)端點的極坐標軌跡。(5)震蕩次數(shù)N(6)穩(wěn)態(tài)誤差穩(wěn)態(tài)誤差是當時間t趨于無窮是,系統(tǒng)希望的輸出與實際的輸出之差,表示為。den=[ 1 75]。即:系統(tǒng)在右半s閉環(huán)極點個數(shù) Z = P – R = 0由于G(s)H(s)曲線的對稱性,因此可以用系統(tǒng)的開環(huán)頻率特性曲線G(jw)H(jw)對(1,j0)的包圍情況來判斷。 在此次設計中,主要研究二階定常線性系統(tǒng)。系統(tǒng)的校正性問題,是一種原理性的局部設計。否則系統(tǒng)無法正常工作,甚至可能導致設備毀壞,造成重大損失。實際系統(tǒng)中存在多種不同類型的系統(tǒng)。指導教師簽字: 汪紀鋒 年 月 日系主任簽字: 年 月 日備注:此任務書于第一學期第十六周前由系主任發(fā)放給指導教師,指導教師填寫完整后于下學期第一周內(nèi)交回各系,由各系進行統(tǒng)計并組織學生于第二周進行選題,確定選題后,交至輔導員于第三周發(fā)放給學生。通過設計,鍛煉同學自我發(fā)現(xiàn)問題,并且自主解決問題的能力。因此,二階系統(tǒng)的性能分析在自動控制系統(tǒng)分析中有非常重要的地位。若微分(或差分)方程的系數(shù)是時間的函數(shù),則這種線性系統(tǒng)稱為線性時變系統(tǒng),這種系統(tǒng)的響應不僅取決與輸入信號的形狀和系統(tǒng)的特性,而且與輸入信號施加的時刻有關(guān)。 比例環(huán)節(jié) 圖212 比例環(huán)節(jié) 積分環(huán)節(jié)圖213 積分環(huán)節(jié) 圖214 慣性環(huán)節(jié)第二節(jié) 系統(tǒng)數(shù)學模型令開環(huán)傳遞函數(shù):=閉環(huán)傳遞函數(shù):=特征方程:D(S)==0第3章 系統(tǒng)分析二階系統(tǒng)的開環(huán)傳遞函數(shù)為閉環(huán)傳遞函數(shù)為閉環(huán)傳遞函數(shù)的分母多項式等于零的代數(shù)方程稱為二階系統(tǒng)的閉環(huán)特征方程,即閉環(huán)特征方程的兩個根稱為二階系統(tǒng)的特征根,即 上述二階系統(tǒng)的數(shù)學模型中有兩個特征參數(shù),其中上述二階系統(tǒng)的特征根表達式中,隨著阻尼比的不同值,特征根S有不同類型的值,或者說特征根S在S平面上位于不同的位置,共有以下五種情況。 0型系統(tǒng)施加斜坡信號,當時間趨于無窮大時,其穩(wěn)態(tài)誤差的值是趨于無窮大的。在二階系統(tǒng)中,其中 圖 332 阻尼比參量根軌跡,故增大自然振蕩角頻率或減小阻尼比,都將減小上升時間。從直觀上看,可以把頻率特性定義為系統(tǒng)的穩(wěn)態(tài)正弦輸出信號的復數(shù)符號與輸入正弦信號的復數(shù)符號之比,即定義線性定常系統(tǒng)的頻率特性為輸出信號的傅氏變換與輸入信號的傅氏變換之比,表為 波德圖對數(shù)坐標圖又稱為波德圖。原系統(tǒng)的nyquist圖如下:num=[0 0 75]。第三節(jié) 超前校正 圖 41 超前校正傳遞函數(shù)為:頻率特性為: 可以證明(1)(2) 軌跡為上半圓。G=*(1+5*s)/(s*(*s+1)*(1+*s)) Transfer function: 37 s + s^3 + s^2 + s bode(G)圖41 校正后系統(tǒng)的波德圖由校正后的系統(tǒng)波德圖知,,穩(wěn)定裕度為0,所以校正后的系統(tǒng)是穩(wěn)定的,且滿足期望指標。由于MATLAB功能的不斷擴展,所以現(xiàn)在的MATLAB不僅僅局限于現(xiàn)代控制系統(tǒng)分析和綜合的應用,它已是一種包羅眾多科學的功能強大的“技術(shù)計算機語言(The language of Technical Computing)”,目前這套軟件包括基本程序和各種類型的軟件工具箱。對大多數(shù)用戶來說,要想靈活,高效地運用這些工具箱,通常都需要學習相應的專業(yè)知識。: 圖55 原系統(tǒng)在輸入信號5+t作用下的響應曲線 由圖分析知,該系統(tǒng)以恒定的誤差跟蹤速度信號,且以無誤差跟蹤階躍信號。不管怎么樣,這次的論文對我來說都是很嚴肅的事,里面的內(nèi)容也涉及到了很多其他方面的知識,特別是別的幾個老師,雖然他們都各自有各自的工作,但是當我的論文遇到問題時,他們也是和我一樣的著急,真的是讓他們費了不少的心,謝謝你們,還有在這四年里教會我很多專業(yè)知識的自動化系的老師,謝謝你們讓我懂得了很多,也見識到很多。€”concerning its ultimate effect. There is first the fear that continued expansion in this direction will be acpanied by largescale technological unemployment, and in consequence by acute economic distress and social upheaval. As Mr. Leontief points out in his article, the possibility of disastrous technological unemployment cannot be ruled out on purely theoretical grounds。第二節(jié) 致謝這次論文的完成首先要感謝我的指導老師汪紀峰老師,從最開始的選題課,收集資料,還有最后的檢查工作,汪老師都付出了很多的心血,老師平時的工作很忙,但是不管我遇到什么問題,只要我去找老師,他不管有多忙,都會笑呵呵的停下手中的工作,很耐心的給我講題。b39。正因為如此,人們用MATLAB語言編寫程序就有如在便簽上書寫公式和求解,MATLAB被稱為“便簽式”的科學工程計算機語言。早期主要用于現(xiàn)代控制中復雜的矩陣,向量的各種計算。s39。開環(huán)頻域指標為開環(huán)增益Ko、低頻段斜率v、開環(huán)截至頻率wc, 中頻段斜率vc、中頻段寬度h、幅值裕度Lg、相位裕度、高頻段衰減率vh等基于頻率特性的方法來作系統(tǒng)校正稱為頻率校正。)。頻率